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change factor to dynamically update the predefined threshold of a stopping criterion during the
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active learning, we design several comparison experiments on seven real-world datasets for three
representative natural language processing applications such as word sense disambiguation, text
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1. INTRODUCTION

In machine learning approaches to Natural Language Processing (NLP), super-
vised learning methods generally set their parameters using labeled training
data. However, creating a large labeled corpus is often expensive and time con-
suming in some real-world applications, and is a bottleneck to build an effective
supervised classifier for a new application or domain. For example, consider the
word sense disambiguation task. In this case, building a large sense-tagged cor-
pus is critical for good performance but requires significant efforts of human
annotators, as described in the OntoNotes [Hovy et al. 2006].

The goal of active learning is to design a learning algorithm which has the
ability to automatically select the most informative unlabeled examples for
human annotation [Cohn et al. 1994; Seung et al. 1992]. The ability of the
active learner is also referred to as selective sampling. Active learning aims
to minimize the amount of human labeling effort required for a supervised
classifier to achieve a satisfactory performance [Cohn et al. 1996]. In recent
years active learning has been widely studied in various Natural Language
Processing (NLP) tasks, such as Word Sense Disambiguation (WSD) [Chen
et al. 2006; Zhu and Hovy 2007; Chan and Ng 2007], Text Classification (TC)
[Lewis and Gale 1994; McCallum and Nigam 1998a; Tong and Koller 2001],
Named Entity Recognition (NER) [Shen et al. 2004; Jones 2005; Tomanek
et al. 2007], chunking [Ngai and Yarowsky 2000], Information Extraction (IE)
[Thompson et al. 1999; Culotta and McCallum 2005], and statistical parsing
[Hwa 2000; Tang et al. 2002; Becker and Osborne 2005].

We focus on pool-based active learning [Lewis and Gale 1994] in which the
learner chooses the most informative unlabeled instances from a pool of unla-
beled instances for human labeling. Two other popular variants widely used in
previous active learning studies include stream-based active learning [Freund
et al. 1997] and active learning with membership queries [Angluin 1988]. In the
pool-based active learning setting, the learner is presented with a fixed pool of
unlabeled instances, whereas in the stream-based active learning setting, the
learner is presented with a stream of unlabeled instances. From this perspec-
tive, stream-based active learning can be viewed as an online version of the
pool-based model. The active learning with membership queries model can be
viewed as a pool-based case where the pool consists of all possible points in a
domain [Baram et al. 2004]. We do not consider these variations in this work.

In the pool-based active learning setting, two major schemes exist: uncer-
tainty sampling and committee-based sampling. Uncertainty sampling [Lewis
and Gale 1994] uses only one classifier to identify unlabeled examples on which
the classifier is least confident. Committee-based sampling [Seung et al. 1992;
Dagan and Engelson 1995; McCallum and Nigam 1998a] generates a commit-
tee of classifiers and selects the next unlabeled example by the principle of
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maximal disagreement among these classifiers, which is uncertainty sampling
with an ensemble. By using these selective sampling techniques, the size of the
labeled training data can be significantly reduced for text classification [Lewis
and Gale 1994; McCallum and Nigam 1998a] and word sense disambiguation
[Chen et al. 2006; Zhu and Hovy 2007].

In active learning applications, obtaining of a stopping criterion is a very
important practical issue because it makes little sense to continue the active
learning procedure until the entire unlabeled corpus has been labeled. In prin-
ciple, how to learn a stopping criterion is a problem of estimation of classifier
effectiveness during active learning [Lewis and Gale 1994]. That is, defining an
appropriate stopping criterion for active learning is a trade-off issue between
labeling cost and effectiveness of the classifier.

This article presents four simple confidence-based criteria for active learn-
ing, including maximum uncertainty, overall uncertainty, selected accuracy, and
minimum expected error methods. To obtain a proper threshold for each stop-
ping criterion in a specific active learning task, this article further presents a
threshold update strategy that uses the label change factor to dynamically up-
date the predefined threshold of a stopping criterion. The label change factor
will be introduced in Section 4.5. These proposed methods are easy to im-
plement and involve only small additional computation costs. They can also be
easily applied to several different learners, such as Naive Bayes (NB) and Max-
imum Entropy (MaxEnt). Finally, we evaluate the effectiveness of these stop-
ping criteria for active learning on three NLP tasks including word sense dis-
ambiguation, text classification, and opinion analysis, using seven real-world
datasets.

2. ACTIVE LEARNING PROCESS

In the pool-based active learning framework, a small number of 1abeled samples
and a large number of unlabeled examples are first collected in the initialization
stage, and a closed-loop stage of query (i.e., selective sampling process) and
retraining is adopted. In this article, we are interested in uncertainty sampling
schemes [Lewis and Gale 1994] for pool-based active learning, which in recent
years has been widely studied in tasks such as word sense disambiguation
[Chen et al. 2006; Chan and Ng 2007], Text Classification (TC) [Lewis and
Gale 1994; Zhu et al. 2008b], statistical syntactic parsing [Tang et al. 2002],
and named entity recognition [Shen et al. 2004].

In uncertainty sampling schemes, an unlabeled example x with maximum
uncertainty is chosen for human annotation at each learning cycle. The maxi-
mum uncertainty implies that the current classifier (i.e., the learner) has the
least confidence on its classification of this unlabeled example. The main dif-
ference among the various pool-based active learning algorithms is the method
of assessing the uncertainty of each unlabeled example in the pool. In the case
of probabilistic models, the uncertainty of the classifier is commonly estimated
using the entropy of its output [Tang et al. 2002; Chen et al. 2006; Zhu and Hovy
2007]. For active learning with nonprobabilistic models such as support vector
machines [Tong and Koller 2001; Schohn and Cohn 2000], the classification

ACM Transactions on Speech and Language Processing, Vol. 6, No. 3, Article 3, Publication date: April 2010.



3:4 . J. Zhu et al.

Procedure: Active Learning Process
Input: Initial small training set L, and pool of unlabeled data set U
Use L to train the initial classifier C
Repeat
1.Use the current classifier C to label all unlabeled examples in U
2. Based on uncertainty sampling scheme, select m' most uncertain unlabeled examples from U, and
ask an oracle for labeling
3.Augment L with these m new labeled examples, and remove them from U
4.Use L to retrain the current classifier C

Until the predefined stopping criterion SC is met.

Fig. 1. Active learning with uncertainty sampling.

margin is used. In this article, we mainly focus on the problem of applying a
stopping criterion for active learning with probabilistic models, but will also
discuss the possibility of applying to nonprobabilistic models, to be described
in Section 4.6.

In uncertainty sampling schemes, the uncertainty measurement function
based on the entropy is expressed by [Tang et al. 2002; Chen et al. 2006; Zhu
and Hovy 2007]

UM(x)=—_ P(y | x)log Py | x), (1)

yeY

where P(y | x) is the a posteriori probability. We denote the output class y €
Y ={y1, %2, ..., yx}. UM(.) denotes the uncertainty measurement function based
on the entropy estimation of the classifier’s posterior distribution. A higher
UM(x) value indicates that the unlabeled example x is more uncertain from
the viewpoints of the classifier.

3. PROBLEMS OF GENERAL STOPPING CRITERION

As shown in Figure 1, the active learning process repeatedly provides the
most uncertain unlabeled examples to an oracle for labeling, and updates the
training set, until the predefined stopping criterion SC is met. The goal for
using active learning is to expedite the learning process and reduce the manual
labeling efforts. In this case, we can define a stopping criterion by means of
determining when the classifier has reached the maximum effectiveness during
the active learning procedure.

Along this line of thinking, a general stopping criterion SC can be defined by

1 effectiveness(C) > 0
0 otherwise,

SCar = { (2)

where 0 is a user predefined constant and the function effectiveness(C) evalu-
ates the effectiveness of the current classifier. The learning process ends only

1A batch-based sample selection labels the top-m most uncertain unlabeled examples at each
learning cycle to decrease the number times the learner is retrained.
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Active Learning for WSD task
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Fig. 2. An example of active learning for WSD on word “interest”.

if the stopping criterion function SCyy, is equal to 1. The value of constant 6
represents a trade-off between the cost of annotation and the effectiveness of
the resulting classifier. A larger 6 would result in more unlabeled examples to
be selected for human annotation, and the resulting classifier would be more
robust. A smaller 0, on the other hand, means fewer unlabeled examples being
selected to annotate and the resulting classifier will be less robust.

There are three common ways to define the function effectiveness(C) [Li and
Sethi 2006] as follows.

—The active learning process can end if the labeled training set reaches de-
sirable size. However, it is almost impossible to predefine an appropriate
size of desirable labeled training data that is guaranteed to induce the most
effective classifier.

—The active learning loop can end if no uncertain unlabeled examples can be
found in the pool. That is, all informative examples have been selected for
human labeling from the viewpoints of the classifier. This situation seldom
occurs in practice.

—The active learning process can end if the targeted performance level is
achieved. However, it is difficult to predefine an appropriate and achievable
performance, since this should depend on the problem at hand and the users’
requirements.

To overcome these difficulties, it seems an appealing solution to stop the active
learning process when repeated cycles show no significant performance im-
provement during active learning. That is, the classifier’s performance change
would be a good signal to define a stopping criterion for active learning. Here
we give an example to explore using the performance change factor to define a
proper stopping criterion, as shown in Figure 2.

As shown in Figure 2, the accuracy performance generally increases, but ap-
parently degrades at iterations 30, 90, and 190, and stablizes during iterations
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220-260 during the active learning process. In this example, the actual high-
est performance of 91.5% is achieved after 900 annotated examples, which is
not shown. The accuracy performance curve shows an increasing trend, but
it is not monotonically increasing. In such a case, it will be not easy to auto-
matically determine the point where no significant performance improvement
can be further achieved by simply looking at the trend of performance change.
A false judgement can often be misled by the nonmonotonic behavior of the
performance curve.

To sufficiently estimate the performance of the classifier during active learn-
ing, a separate validation set should be prepared in advance. However, in the
separate validation set, too few samples may not be adequate for a reasonable
estimation and may result in an incorrect result, and too many samples would
cause additional high cost because the separate validation set is generally con-
structed manually in advance.

In a real-world active learning application, preparing an appropriate sepa-
rate validation set for performance estiamtion is often infeasible due to too high
manual annotation cost involved. In addition, cross-validation on the labeled
set is also almost impractical during the active learning procedure, because the
alternative of requiring a held-out validation set for active learning is counter-
productive. To remedy these problems, in this study we look for a self-contained
method to define a proper stopping criterion for active learning.

4. CONFIDENCE-BASED STOPPING CRITERIA

To define an appropriate stopping criterion for active learning, we consider ef-
fectiveness estimation as the second task to confidence estimation of the current
classifier. If the classifier already has sufficient confidence on its classification
of the remaining unlabeled data, we can assume the current labeled data is
sufficient to train the classifier with maximum effectiveness. In other words,
attempting to obtain the labels of these remaining unlabeled examples is not
going to significantly improve learner performance.

Based upon such assupmption, this article presents four simple confidence-
based stopping criteria for pool-based active learning, including maximum un-
certainty, overall uncertainty, selected accuracy, and minimum expected error
methods. Parts of this work were originally introduced in our previous studies
[Zhu and Hovy 2007; Zhu et al. 2008a, 2008b]. To obtain a proper threshold
for a confidence-based stopping criterion in a specific task, we further describe
a threshold update strategy which uses the classification change factor to dy-
namically update the predefined threshold of a stopping criterion during the
active learning process.

4.1 Maximum Uncertainty Method

In uncertainty sampling schemes, the most uncertain unlabeled example is
viewed as the most informative instance to be chosen by the learner at each
learning cycle [Lewis and Gale 1994]. The uncertainty value of the chosen
example is a good signal to reflect the confidence of the current classifier on
all unlabeled examples. If the uncertainty value of this chosen example is
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sufficiently small, we can assume that the current classifier has sufficient
confidence on its classification of the remaining unlabeled data. Therefore,
the active learning process can stop.

Based on this assumption, we present an approach based on uncertainty
estimation of the most uncertain unlabeled example to obtain a stopping cri-
terion for active learning, named the Maximum Uncertainty (MU) method. Its
strategy is to consider whether the uncertainty values of all unlabeled example
are less than a very small predefined threshold.? The stopping criterion SCyy
can be defined by

SCy = {1 Vx e U, UM(.?C)E@MU (3)
0 otherwise,
where 017 is a user-predefined uncertainty threshold, and U denotes the unla-
beled pool.

4.2 Overall Uncertainty Method

The motivation behind the Overall Uncertainty (OU) criterion is similar to that
of the maximum uncertainty criterion. However, the maximum uncertainty
criterion only considers the most uncertain example at each learning cycle. The
overall uncertainty method considers the overall uncertainty on all unlabeled
examples. If the overall uncertainty of all unlabeled examples becomes very
small, we can assume that the current classifier has sufficient confidence on its
classification of the remaining unlabeled data. The strategy of the OU method
is to consider whether the average uncertainty value of all remaining unlabeled
examples is less than a very small predefined threshold. The stopping criterion
SCoy can be defined by

2 veey UM(x) <
SCou = 1 19 = fou (4)
0 otherwise,

where 0oy is a user-predefined uncertainty threshold, and |U| denotes the size
of the unlabeled data pool U.

4.3 Selected Accuracy Method

In batch mode active learning settings, the classification accuracy on the top-m
selected examples (i.e., m most uncertain cases) at each learning cycle would be
a good signal to indicate the confidence of the current classifier on remaining
unlabeled examples. It is therefore easy to estimate this accuracy based on the
feedback from the oracle when an active learner asks for true labels for these
selected unlabeled examples (see Figure 1). The current classifier shall have
the least confidence on its classifications of these chosen unlabeled examples at
each learning cycle. If the current classifier can correctly classify these chosen

2To determine an appropriate threshold for a stopping criterion, some experiments were conducted
to demonstrate the effectiveness of the stopping criterion with various thresholds, discussed in
Section 5.
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unlabeled examples, we can assume that the classifier has sufficient confidence
on its classification of the remaining unlabeled data.

Based on this assumption, we present a Selected Accuracy (SA) method that
is based on the feedback from the oracle. Its strategy is to consider whether the
current classifier can correctly predict the labels of top-m selected unlabeled ex-
amples. In other words, if the accuracy performance of the current classifier on
these most uncertain examples is larger than a predefined threshold, the active
learning process can stop. The stopping criterion SCss can thus be defined by

SCsy = { 1 ACC,,(C) > 0sa 5)

0 otherwise,

where g4 is a user-predefined accuracy threshold and function ACC,,(C) eval-
uates the accuracy performance on the top-m selected unlabeled examples
through feedback of the Oracle.

4.4 Minimum Expected Error Method

So far MU, OU, and SA methods do not directly reflect the effectiveness of the
classifier, as they only consider either the uncertainty of each unlabeled exam-
ple or the accuracy of the top-m selected unlabeled examples at each iterative
step. In previous work, Roy and McCallum [2001] presented a method to select
the most informative unlabeled example by optimizing expected future error
on future unlabeled examples during an active learning process. It is believed
that the expected error of a classifier is closely related to the effectiveness of the
classifier. In this article we present a statistical learning approach to defining
a stopping criterion which is based on the estimation of the current classifier’s
expected error on all future unlabeled examples, named the Minimum Expected
Error (MEE) method. The motivation behind MEE is that a classifier C with
maximum effectiveness results in the lowest expected error on whole test set
in the learning process. The stopping criterion SCyzg can be defined as

SCasmg — { 1 Error(C) < 6g )

0 otherwise,

where Error(C) evaluates the expected error of classifier C that closely reflects
the classifier effectiveness. 0 is a user-predefined error threshold.

The key issue in defining the MEE-based stopping criterion SCygg is how
to calculate the expected error of classifier C at each learning cycle. Given a
labeled training set L and an input sample x, we can express the expected error
of the classifier C by

Error(C) = /R(C(x) | ) P(x)dx, (7
where P(x) represents the known marginal distribution of x. C(x) represents

the classifier’s decision that is one of & classes: y € Y = {y1, y2, ..., yx}. R(y; | x)
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denotes a conditional loss for classifying the input sample x into a class y; that
can be defined by

k
R(yi | ) =) 2li, j1P(y; | %), (8)

j=1

where P(y; | x) is the a posteriori probability produced by classifier C. A[i, j]
is a zero-one loss function for every class pair {i, j} that assigns no loss to a
correct classification, and assigns a unit loss to any error.

In this study, we focus on pool-based active learning in which a large unla-
beled data pool U is available, as described Figure 1. During the active learning
process, our goal is to estimate a classifier’s expected error on future unlabeled
examples in the pool U in order to determine the active learning stopping cri-
terion. The pool U can provide an estimate of P(x). So for minimum error rate
classification [Duda and Hart 1973] on unlabeled examples, the expected error
of the classifier C can be rewritten as

1
Error(C) = ﬁ 3; <1 — r;lg/x P(y | x)). 9

Assuming N unlabeled examples in the pool U, the total time is O(N) for
automatically determining whether the proposed stopping criterion SCygg is
satisfied in the active learning. If the pool U is very large (e.g., more than
100,000 examples), it would result in high computation cost at each iteration
of active learning.

A good approximation is to estimate the expected error of the classifier using
a randomly chosen subset of the pool, instead of all unlabeled examples in U.
Empirically, a good estimation of expected error can be formed with a few
thousand examples [Roy and McCallum 2001].

4.5 Threshold Update Strategy

Perhaps there are different appropriate thresholds for a confidence-based stop-
ping criterion in different active learning applications. Therefore, it is a chal-
lenge to predefine an appropriate threshold for each confidence-based stopping
criterion in a specific task. To solve this problem, we present a threshold up-
date strategy by considering a label change factor to dynamically update the
predefined threshold during the active learning process.

Whereas the four confidence-based criteria described earlier directly reflect
the confidence of the current classifier on all remaining unlabeled examples, we
further explore the motivation behind uncertainty sampling, which is to find
some unlabeled examples near decision boundaries, and use them to clarify
the position of decision boundaries. In other words, in uncertainty sampling
schemes, an unlabeled example with maximum uncertainty has the highest
chance to change the decision boundaries.

If there is no unlabeled example that can potentially change the decision
boundaries, getting the labels of these remaining unlabeled examples is un-
likely to help the learner much, hence the active learning process should stop.
The difficulty lies in how to exactly find which unlabeled example can truly
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change the decision boundaries in the next learning cycle, because the true
label of each unlabeled example is unknown.

To overcome this difficulty, we make a simple assumption that labeling an
unlabeled example may shift the decision boundaries if this example was pre-
viously at “left” of the boundary and is now at “right”, or vice versa. In other
words, if an unlabeled example is assigned to two different labels during two
adjacent learning cycles,? we assume that the labeling of this unlabeled exam-
ple has a good chance to change the decision boundaries. Once there is no such
unlabeled example in the remaining pool, we think the active learning process
becomes stable, and can end.

Based on such assumption, we present a method, called the Threshold Up-
date (TU) strategy, to automatically adjust the predefined threshold of a stop-
ping criterion during the active learning process. This method considers the
potential ability of each unlabeled example on changing decision boundaries
and checks whether there is any classification label change to the remaining
unlabeled examples during two recent consecutive learning cycles (previous
and current). It checks whether the active learning becomes stable when the
current stopping criterion is satisfied. If not, we believe there are some remain-
ing unlabeled examples that can potentially shift the decision boundaries. In
such cases, the threshold of the current stopping criterion can be revised to
keep the active learning process going.

For the previously described four confidence-based stopping criteria such as
MU, OU, SA, and MEE methods, the four corresponding strategies are given
as follows.

—TU-MU strategy applies the threshold update technique to the MU method.
—TU-0U strategy applies the threshold update technique to the OU method.
—TU-SA strategy applies the threshold update technique to the SA method.

—TU-MEE strategy applies the threshold update technique to the MEE
method.

5. EVALUATION

5.1 Experimental Settings

In this section, we analyze the effectiveness of four simple stopping criteria for
active learning, including Maximum Uncertainty (MU), Overall Uncertainty
(OU), Selected Accuracy (SA), and Minimum Expected Error (MEE), and four
threshold update strategies: TU-MU, TU-OU, TU-SA, and TU-MEE. Because it
is costly and practically infeasible to prepare a separate development dataset to
determine an appropriate threshold for a stopping criterion, we use a common
dataset in our experiments. We first test each stopping criterion with different
threshold values such as {0.1, 0.01, 0.001, 0.0001} for MU, OU, and MEE, and
{0.9, 0.95, 1.0} for SA, respectively.

3For example, an unlabeled example x was classified into class A at ith iteration, and class B at
i+1th iteration.
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Algorithm: Threshold Update Strategy

Given:

(] A confidence-based stopping criterion SC: max-uncertainty or overall-uncertainty or selected-accuracy or
minimum-expected-error

] The predefined threshold for the stopping criterion SC is initially set to

Steps (during active learning process):

1) First check whether SC is satisfied. If yes, go to 2);

2) Then check whether classification-change criterion is satisfied. If yes, go to 4), otherwise go to 3);

3) Automatically update* the current threshold to be a new smaller value for max-uncertainty or overall-
uncertainty or minimum-expected-error criterion, or to be a new larger value for selected-accuracy
criterion, and then go to 1).

4) Stop active learning process.

Fig. 3. Threshold update algorithm.

In the experimental setting of each threshold update strategy, the initial
threshold is equally set to 0.1 for MU, OU, and MEE, and 0.9 for SA. For the
threshold revision during active learing process, the threshold value decreases
by 0.01 each time for MU, OU, and MEE, and increases by 0.1 each time for
SA, as shown in Figure 3.

In active learning, when the classifier firstly reaches the highest perfor-
mance, it is suggested that the labeled data can sufficiently train a classifier
with maximum effectiveness, and the active learning process can stop. We re-
fer to such a time point as the Best Stopping Time (BST) point for ending the
active learning process. That is, the best stopping criterion can make the active
learning process stop at the BST point. To evaluate the effectiveness of each
stopping criterion, we analyze the difference between the BST point and the
stopping time point predicted by each stopping criterion. The smaller the dif-
ference between both time points, the better the stopping criterion. Therefore,
a time point can be represented in the form of the number of unlabeled ex-
amples learned for human labeling. For notational convenience, the difference
Agc between the BST point and the stopping time point predicted by a stopping
criterion SC is defined by

Asc = |égsT — éprl,

where &gsr and & pr denote the percentage of unlabeled examples in the pool U
that have been learned at the BST and the Predicted Time (PT) points of the
stopping criterion SC, respectively.

In the following active learning comparison experiments, each algorithm
starts with a randomly chosen initial training set of 10 labeled examples, and
makes 20 queries for each active learning iteration. A 10 by 10-fold cross-
validation was performed. All results reported are the average of 10 trials in
each active learning process. We utilize a Maximum Entropy (MaxEnt) model

4The threshold revision implementation is discussed in Section 5.1.
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to design the basic classifier used in active learning. The advantage of the
MaxEnt model is the ability to freely incorporate features from diverse sources
into a single, well-grounded statistical model [Berger et al. 1996]. A publicly
available MaxEnt toolkit® was used in this experiment. The accuracy was used
as the performance metric in the following experiments.

5.2 Evaluation Datasets

Following previous studies on active learning for NLP applications [Lewis and
Gale 1994; McCallum and Nigam 1998a; Tong and Koller 2001; Chen et al.
2006; Zhu and Hovy 2007; Chan and Ng 2007], to evaluate the effective-
ness of each stopping criterion for pool-based active learning, we constructed
some active learning experiments for three types of NLP applications includ-
ing word sense disambiguation, text classification and opinion analysis tasks,
using seven publicly available real-world datasets.

— Word Sense Disambiguation Task. Two publicly available real-world datasets
are used in this task: OntoNotes and Interest datasets. The OntoNotes project
[Hovy et al. 2006] uses the WSJ part of the Penn Treebank [Marcus et al.
1993]. The senses of noun words occurring in OntoNotes are linked to the
Omega ontology [Philpot et al. 2005]. In this experiment, we focus on the
10 most frequent nouns used in our previous work [Zhu and Hovy 2007]:
rate, president, people, part, point, director, revenue, bill, future, and order.
The Interest dataset was developed by Bruce and Wiebe [1994]. It consists
of 2369 sentences of the noun “interest” with its correct sense manually
labeled. The noun “interest” has six different senses in this dataset. The
interest dataset has been previously used for a WSD study [Ng and Lee 1996].
To build the MaxEnt-based classifier for the WSD task, three knowledge
sources are used to capture contextual information: unordered single words
in topical context, POS of neighboring words with position information, and
local collocations. These are the same the knowledge sources used in other
word sense disambiguation studies [Lee and Ng 2002].

—Text Classification Task. Four publicly available datasets are used in
this active learning comparison experiment: WebKB, Comp2a, Comp2b,
and Comp2c datasets. The WebKB dataset has been widely used in text
classification research. Following previous studies [McCallum and Nigam
1998b], we use the four most populous categories: student, faculty, course,
and project. The Comp2a dataset consists of comp.os.ms-windows.misc and
comp.sys.ibm.pc.hardware subset of 20 news groups. The Comp2b dataset
consists of comp.graphics and comp.windows.x categories from 20 news
groups. The Comp2c dataset consists of alt.atheism and talk.religion.misc
classes. These datasets have been previously used in active learning for text
classification [Roy and McCallum 2001; Schein and Ungar 2007]. We first pro-
cessed all datasets by running the corpus with a stop-word list. The MaxEnt
model has been used to design the text classifier. No feature selection tech-
nique is used for the text classifier, because experimental results show that

5See http:/homepages.inf.ed.ac.uk/s0450736/maxent._ toolkit.html.
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Table I. Descriptions of These Datasets Used in Following
Active Learning Evaluation (including: the number of classes
and class distribution)

Dataset Classes Class Distribution
rate 2 208/934/
president 3 936/157/17/
people 4 815/67/1/5/
part 4 102/454/16/75/
OntoNotes | point 7 471/37/88/19/12/3/7/
director 2 637/35/
revenue 2 517/23/
bill 4 349/122/40/3/
future 3 23/82/409/
order 8 342/6/61/54/4/2/6/3/
Interest 6 500/1252/178/66/361/11/
WebKB 4 504/930/1641/1124/
Comp2a 2 983/1000/
Comp2b 2 999/1000/
Comp2¢ 2 1000/1000/
MPQA 2 4958/6081/

using feature selection seems to have negative effects on the performance of
active learning for text classification.

—Opinion Analysis Task. To analyze an opinioned text, the first step is to build
a classifier that identifies opinion-bearing sentences in the text under a two-
way classification framework [Kim 2006]. These opinion-bearing sentences
express an opinion, namely subjective sentences. The Multi-Perspective
Question Answering (MPQA) opinion corpus [Wiebe et al. 2003] contains
news articles manually annotated using an annotation scheme for subjectiv-
ity. According to the opinion annotation scheme, all sentences in the MPQA
can be divided into two categories: subjective and objective. As shown in
Table I, the MPQA corpus contains 4958 objective sentences and 6081 sub-
jective sentences. In this work, the opinion analysis is viewed as a binary
classification task in which the MaxEnt model is also utilized to design the
classifier for active learning, and only four types of tokens are considered as
features, including noun, verb, adjective, and adverb.

5.3 Effectiveness Evaluation in Terms of Agc

The first set of experiments conducted demonstrate the relative performance of
several different stopping criteria on multiple datasets in terms of Ag¢. Figure 4
shows the effectiveness of each stopping criterion with different thresholds on
evaluation datasets in terms of the Agc measure. The smaller the difference
Agsc value is, the better the stopping criterion SC. Agc = 0 indicates that the
BST point and the predicted time point are the same.

For MU, OU, and MEE, a smaller predefined threshold generally results in
learning more unlabeled examples for human labeling. For SA, a larger thresh-
old results in learning more unlabeled examples. As mentioned in Sections 4.1,
4.2, and 4.4, MU, OU, and MEE methods are preferable with a small threshold,

ACM Transactions on Speech and Language Processing, Vol. 6, No. 3, Article 3, Publication date: April 2010.



3:14

100

o J. Zhu et al.

Difference between the BST point and the predicted time point of MU methods

Difference between the BST point and the predicted time point of OU methods

100

MU(0.1) —— 0uU(0.1) —o—

MU(0.01) —— 0uU(0.01) ——

80 MU(0.001) —&— 80 0U(0.001) —5—
MU(0.0001) —><— OUQ.OOO1 ——

TU-MU Strategy —— TU-OU Strategy —<—

60

Difference Value (%)

Difference Value (%)

7 8 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0

10 11 12 13 14 15 16

Data Sets Data Sets
Difference between the BST point and the predicted time point of SA methods Difference between the BST point and the predicted time point of MEE methods
100 100
SA(0.9) —o— MEE(0.1) —o—
SA(0.95) —— MEE(0.01) ——
80 SA(1.0) —=— 80 MEE(0.001) —=—
SA —<— e

MEE(0.0001
TU-MEE Strategy ——

60 60

40

Difference Value (%)
Difference Value (%)

20,

R 0 = _ i a— o
10 11 12 13 14 5 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Data Sets

1 2 3 4 5 6 7 8 9
Data Sets

Fig. 4. Effectiveness of various stopping criteria with different thresholds. The numbers vary-
ing from 1-16 in the x-axis represent various evaluation datasets {Rate, President, People, Part,
Point, Director, Revenue, Bill, Future, Order, WebKB, Comp2a, Comp2b, CompZ2¢, Interest, MPQA},
respectively. The difference value (%) in the y-axis denotes the difference Agc between the BST
point and the time point predicted by a stopping criterion SC.

because a classifier with maximum effectiveness can result in sufficient con-
fidence and the lowest expected error on its classification of the remaining
unlabeled data. Take MEE for example, MEE(0.0001) outperforms MEE(0.1)
on most evaluation datasets except on the 5th, 6th, and 9th datasets (Point,
Director, Future). For MU methods, on the other hand, among various MU meth-
ods with different thresholds, MU(0.0001) is the worst, and MU(0.1) works the
best. In this case, a smaller threshold seems to result in worse performance for
MU.

Seen from the preceding right-top and left-bottom figures in Figure 4, a
fixed threshold cannot guarantee that an individual confidence-based stopping
criterion can obtain satisfactory performance on all datasets. It is a crucial
issue how to choose an appropriate threshold parameter for an individual stop-
ping criterion in a specific application. The threshold update strategy was thus
designed to overcome this problem. Actually the advantage of the threshold
update strategy is to consider an additional classification label change of each
unlabeled example during the active learning process. Figure 4 shows that
by dynamically adjusting the predefined threshold for a stopping criterion on
each evaluation dataset, the threshold update technique can improve the per-
formance of each individual stopping criterion on most datasets. The threshold
update technique makes each individual stopping criterion feasible in a specific
application, because the strict requirement of a fixed predefined threshold is
not needed.
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Table II. Average Difference Agpe Values of Each Stopping Criterion Over All
Evaluation Datasets, Compared with the BST Point

Methods  MU(0.1) MU(0.01) MU(0.001) MU(0.0001) TU-MU

Agve(%) 9.2 13.9 20.1 31.4 9.2
Methods OU(0.1) 0U(0.01) 0U(0.001) 0U(0.0001) TU-OU
Aque(%)  15.7 9.3 11.1 17.9 10.7
Methods  SA(0.9) SA(0.95) SA(1.0) TU-SA

Aqve(%)  10.3 14.1 15.5 10.2

Methods MEE(0.1) MEE(0.01) MEE(0.001) MEE(0.0001) TU-MEE
Agque(%)  20.1 11.9 8.7 10.9 7.7

The smaller the difference Aqpe value is, the better the stopping criterion SC is.

To further provide a quantitative analysis of each stopping criterion, Table II
shows average difference A, values of each stopping criterion over all evalua-
tion datasets. A smaller A,,. value indicates the stopping criterion SC achieves
a better performance, in comparison to the BST point.

As shown in Table II, for SA, MEE, and MU, the threshold update strategy
also achieves the best performance among the corresponding methods with dif-
ferent thresholds. The threshold update strategy TU-MEE achieves the best
performance of 7.7% A,y value among all methods. TU-OU outperforms OU
methods except OU(0.01), because of a possible reason that TU-OU obtains
unsatisfactory performance on the 14th dataset (CompZ2c). From experimen-
tal results, we find that on the Comp2c¢ dataset, the classifier has achieved
the highest performance by learning 14.21% of examples, but the classifica-
tion labels of the remaining unlabeled examples are still greatly changing
at the corresponding time point of the active learning process. In such case, the
threshold update strategy would allow active learning to continue.

To further explore the effectiveness of each confidence-based stopping crite-
rion, we analyze the performance of each stopping criterion on the evaluation
dataset under various ASC constraint conditions. The number of evaluation
datasets on which each stopping criterion works well under various Age con-
straint conditions is listed in each cell of Table III.

TU-MEE and MEE(0.001) achieve Agc values less than 0.5% on only three
datasets, and less than 1% on four datasets. Among various MU methods,
only MU(0.1) achieves an Agc value less than 1% on one dataset, and none
for the constraint of the Agc value less than 0.5%. It is noteworthy that TU-
MEE and OU(0.01) obtain Agc values less than 5% on 8 out of 16 sets, and
all threshold update strategies can obtain Agc values less than 10% on half of
the datasets. Under the constraint condition of Age < 10%, TU-SA and SA(0.9)
can work well on 12 out of 16 sets (i.e., 3/4 datasets). Although OU(0.01) can
slightly outperform TU-OU as shown in Table III, we cannot say that 0.01 is the
appropriate threshold value for OU in any given task. Table III shows that in
most cases the threshold update technique can improve each confidence-based
stopping criterion. As mentioned before, the advantage of the threshold update
technique can solve the problem of the fixed predefined threshold in real-world
applications.
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Table III. Analysis of the Effectiveness of Each Stopping Criterion in Terms of Agc Measure

Agc <0.5% <1% <3% <5% <10% <15% <20% <100%
MU(0.1) 1 3 4 9 14 16 16
MU(0.01) 1 3 6 8 11 16
MU(0.001) 1 3 5 8 16
MU(0.0001) 3 4 4 16
TU-MU 4 5 9 14 15 16
0uU(.1) 2 2 7 9 12 16
0U(0.01) 6 8 10 12 14 16
0U(0.001) 1 1 3 4 8 10 14 16
0U(0.0001) 3 4 8 10 16
TU-OU 3 5 8 10 15 16
SA(0.9) 1 4 6 12 14 14 16
SA(0.95) 1 1 1 3 8 13 13 16
SA(1.0) 1 1 1 2 5 13 13 16
TU-SA 1 2 5 6 12 14 14 16
MEE(0.1) 1 1 1 3 6 9 16
MEE(0.01) 2 5 11 12 13 16
MEE(0.001) 3 4 6 7 11 12 14 16
MEE(0.0001) 2 3 8 10 14 16
TU-MEE 3 4 5 8 11 12 15 16

Each digital number in a row indicates the number of evaluation datasets on which the difference Agc
between the predicted time point and the BST point is satisfied with the constraint condition shown in the
corresponding column. The bold number indicates the best performance under current Agc constraints.

5.4 Effectiveness Evaluation in Terms of ACC_Asc

To further analyze the effectiveness of each stopping criterion, here we focus on
the differences between accuracies obtained at the BST point and the predicted
stopping time point of each stopping criterion, namely the accuracy difference
ACC_Agc. The accuracy difference ACC_Agc between the BST point and the
predicted stopping time point of a stopping criterion SC is defined by

ACC_Agc =ACCpst — ACCpr,

where ACCpsr and ACCpr denote the classifier’s accuracy performance ob-
tained at the BST and the Predicted stopping Time (PT) points of a stopping
criterion SC, respectively. The value ACC_Agc > 0 indicates that the accuracy
obtained at the predicted stopping time point is higher than that of the BST
point. Similarly, ACC_Agc < 0 indicates the worse case, and ACC_Ag¢c = 0 in-
dicates that the BST point and the predicted stopping time point are the same.
The second set of experiments conducted evaluate the relative performance
of several different stopping criteria on multiple datasets in terms of the accu-
racy difference ACC_Agc, as shown in Figure 5 and Table IV. We think that a
good stopping criterion can make an active learning process stop at the BST
point as close as possible, and can achieve the same or higher performance Gi.e.,
ACC_Agc =0 or ACC_Agc > 0), comparing to that obtained at the BST point.
Figure 5 depicts that the MU and SA methods achieve accuracies close to that
of the corresponding BST points on most datasets. On the 14th set (CompZ2c),
MU methods achieve slightly better performance than that of the correspond-
ing BST points. OU(0.1) and MEE(0.1) obviously obtain unsatisfactory perfor-
mance on the 11th—16th datasets (WebKB, Comp2a, Comp2b, CompZ2c¢, Interest
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Fig. 5. Accuracy effectiveness of various stopping criteria with different thresholds. The numbers
varying from 1-16 in the x-axis represent various evaluation datasets { Rate, President, People, Part,
Point, Director, Revenue, Bill, Future, Order, WebKB, CompZ2a, Comp2b, CompZ2c, Interest, MPQA},
respectively. Y-axis denotes the difference values ACC_Agc between the accuracies obtained at
BST point and the predicted stopping time point of a stopping criterion SC.

Table IV. Average Accuracy Difference ACC_Agye Values of Each Stopping Criterion
over All Evaluation Datasets, Compared with the BST Point

Methods MU(0.1) MU(0.01) MU(0.001) MU(0.0001) TU-MU
ACC_Ague(%) 0.15 0.21 0.33 0.29 0.19
Methods 0u(0.1) 0U(0.01) 0U(0.001) 0U(0.0001) TU-OU
ACC_Aque(%) —4.97 —1.48 —0.56 —0.13 0.05
Methods SA(0.9) SA(0.95) SA(1.0) TU-SA

ACC_Aque(%) 0.08 0.20 0.21 0.12

Methods MEE(.1) MEE(0.01) MEE(0.001) MEE(0.0001) TU-MEE
ACC_Agpe(%) =175 -3.01 —0.98 —0.49 —0.07

and MPQA). It is noteworthy to observe that these threshold update strategies
achieve average accuracy performances very close to the accuracy performances
obtained at the corresponding BST points, and sometimes a better performance
(ACC_Agpe > 0) is achieved by the threshold update method.

Table IV shows the average accuracy difference ACC_A,,. values of each
stopping criterion over all evaluation datasets, compared with the BST point.
Except OU(0.1), MEE(0.1), OU(0.01), and MEE(0.01), other methods can
achieve accuracies within less than 1% difference to the highest accuracies ob-
tained at the BST points. Compared with the BST points, TU-MU, TU-OU, and
TU-SA achieve slightly better performances while TU-MEE obtains a —0.07%
ACC_Ay. value. As mentioned earlier, a good stopping criterion should achieve
the same or higher performance comparing to that of the BST point. From this
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perspective, except for OU(0.1), MEE(0.1), OU(0.01), and MEE(0.01), there is
no significant difference among these methods in terms of average accuracy dif-
ference ACC_A,,.. Table IV shows that all threshold update techniques achieve
satisfactory performance in terms of ACC_A,,., in comparison to the perfor-
mance of BST points.

6. RELATED WORK

The most similar work done in Vlachos [2008] is to define a stopping criterion
of active learning based on the estimate of classifier’s confidence, in which a
separate outside dataset is used to estimate the classifier’s confidence. The
key issue is how to identify a consistent drop in the confidence of a classifier
during an active learning process. This method is simialr to our OU method.
Our OU method estimates the classifier’s confidence on the remaining unla-
beled data rather than on an outside dataset. Like our OU method, Vlachos
[2008] considered average entropy as the confidence measure for active learn-
ing with a probabilistic classifier such as MaxEnt, and the average margin for
active learning with a nonprobabilistic classifier such as SVMs. Sometimes it
is difficult to sufficiently identify the ideal drop in the confidence of a clas-
sifier during the active learning process in real-world applications [Laws and
Schutze 2008]. For such case, a local maximum of the confidence curve would be
found.

Maximizing expected error reduction [Roy and McCallum 2001] is often used
as a example selection criterion in the pool-based active learning setting. Camp-
bell et al. [2000], Roth and Small [2008], Donmez et al. [2007], and Dimitrakakis
and Savu-Krohn [2008] independently applied a stopping criterion based on the
estimation of the probability of error on the remaining unlabeled data in their
tasks, similar to our MEE method.

Schohn and Cohn [2000] proposed a stopping criterion for active learning
with support vector machines based on an assumption that the data used is
linearly separable. However, in most real-world cases this assumtion seems to
be a little unreasonable and difficult to satisfy. Also, their stopping criterion
cannot be applied for active learning with other types of classifiers such as NB
and MaxEnt models.

Tomanek et al. [2007] considered a factor of the disagreement rate between
the classifiers to predict the stopping point for active learning with committee-
based sampling. This method assumes the classifier has strong confidence on
its classification on the reamining unlabeled examples if the disagreement rate
is close to zero. This method is similar to the classification label change factor
used in our threshold update strategy.

Laws and Schutze [2008] presented a gradient-based stopping criterion for
active learning of named entity recognition. In their method, the active learning
stops if the gradient of the performance curve approaches 0. The key issue
is how to sufficiently estimate the gradient of the performance curve during
the active learning process in real-world applications. As shown in Figure 2,
increasing of the performnce is often not monotonic. For such a case, setting
an appropriate window size for gradient estimation is crucial in a specific
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task. Otherwise, active learning would stop at the local maximum point of the
performance curve.

7. DISCUSSION

In this section, we will discuss the possibility of applying our stopping crite-
ria for other variations of active learning settings. Among our four stopping
criteria, SA can be directly used for active learning with probabilistic or non-
probabilistic classifiers. But SA can only be applied to batch mode active learn-
ing, because SA is based on the feedback from Oracle, and too few uncertain
candidates in each learning cycle may not be adequate for obtaining a reason-
able feedback. For MU and OU, the key is how to measure the uncertainty
of each unlabeled example in other variations of active learning settings. The
crucial issue of our MEE is how to estimate the expected error on the unlabeled
examples in other variations of active learning settings.

An alternative method of uncertainty sampling is to pick the most uncertain
unlabeled example with the smallest margin. The margin is calculated as the
difference between the largest two class probabilities produced by the prob-
abilistic classifier. In this case, the uncertainty measurement function UM(.)
used by MU and OU can be defined by means of the margin instead of the
entropy. Tong and Koller [2001] presented a way of performing uncertainty
sampling with SVMs by using the decision margin of the classifier. The closer a
datapoint lies to the hyperplane, the more uncertain it seems to be. Since SVMs
do not yield probabilistic output but a decision margin, the sigmoid function
[Platt 1999] can be used to obtain the probabilistic outputs which are needed in
defining MU, OU, and MEE stopping criteria for the setting of active learning
with SVMs.

In the ensemble-based active learning setting, the regions of uncertain clas-
sification are often where the classifiers give different answers. To define an
MEE stopping criterion for such a case, we can adopt a method to estimate
the final class posterior for an unlabeled example as the unweighted average
of the class posteriors for each of the classifiers, as used in Roy and McCal-
lum [2001]. This bagged posterior is more reflective of the true uncertaity
[Roy and McCallum 2001]. Korner and Wrobel [2006] applied four different
techniques to measure ensemble disagreement such as margin-based disagree-
ment, uncertainty sampling-based disagreement, entropy-based disagreement,
and specific disagreement (“control”). To apply our MU and OU stopping criteria
for ensemble-based active learning, the uncertainty of each unlabeled example
can be estimated by means of these ensemble disagreement measures [Korner
and Wrobel 2006].

Vlachos [2008] presented a stopping criterion of active learning in which a
separate and large outside dataset is required in advance to estimate the classi-
fier’s confidence, and feature extraction needs to be performed. The confidence
is estimated in terms of the average margin for active learning with SVMs, and
the average entropy for active learning with a maximum-entropy-based classi-
fier. In our work, the confidence estimation for each confidence-based stopping
criterion is done within the unlabeled pool U during the active learning process.
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Fig.6. MU’s confidence estimation on outside corpus for active learning with uncertainty sampling
on Interest dataset. In the MU method, the maximum uncertainty stands for the entropy of the
most uncertain examples chosen at each learning cycle.
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Fig.7. OU’s confidence estimation on outside corpus for active learning with uncertainty sampling
on Interest dataset. In the OU method, overall uncertainty stands for the average entropy of all
remaining unlabeled examples in the pool U at each learning cycle.

We also tried to evaluate the confidence of a classifier using an outside unla-
beled corpus for each confidence-based stopping criterion except the SA method.
This is because the SA method does not rely on the outside unlabeled dataset.
To investigate the impact of confidence estimation (on outside unlabeled cor-
pus) on the effectiveness of each confidence-based stopping criterion, here we
give some exemplary figures as in Figures 6 through 8.

Figures 6, 7, and 8 depict the confidence estimation on outside corpus for
each confidence-based stopping criterion such as MU, OU, or MEE during an
active learning process. We can see from Figure 6 that MU cannot work in this
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MEE confidence estimation on outside corpus for active learning on Interest
0.3

0.25

Expected error
o
>

Minimum-expected-error method —<&—

0 400 800 1200 1600 2000

Number of learned examples

Fig. 8. MEE'’s confidence estimation on outside corpus for active learning with uncertainty sam-
pling on Interest dataset. The expected errors are calculated on all remaining unlabeled examples
in the pool U at each learning cycle.

case. Figures 7 and 8 show that the curves for OU and MEE lay out a decreasing
trend in that both curves become almost flat after iteration 600. This shows the
possibility of applying our OU and MEE methods, for which a separate outside
unlabeled corpus is used for confidence estimation. From this perspective, the
stopping criterion defined in Vlachos [2008] is similar to our OU method.

8. CONCLUSION AND FUTURE WORK

In this article, we address the stopping criterion issue of active learning, and
analyze the problems faced by some common approaches to stopping the ac-
tive learning process. We further present four simple confidence-based stop-
ping criteria, including maximum uncertainty, overall uncertainty, selected
accuracy, and minimum expected error, to determine when to stop an active
learning process. To solve the problem of obtaining a proper threshold for each
confidence-based stopping criterion in a specific task, a threshold update strat-
egy is presented by considering the classification label change of unlabeled
examples during the active learning process. In this strategy the predefined
threshold of each stopping criterion can be automatically adjusted during the
active learning process. The effectiveness of these proposed stopping criteria
for active learning is evaluated on three NLP tasks, namely word sense dis-
ambiguation, text classification, and opinion analysis, using seven real-world
datasets. Some interesting future work is to investigate further how to combine
the best of these criteria, and how to consider performance change to define an
appropriate stopping criterion for active learning.
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