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Abstract—To solve the knowledge bottleneck problem, active
learning has been widely used for its ability to automatically select
the most informative unlabeled examples for human annotation.
One of the key enabling techniques of active learning is uncertainty
sampling, which uses one classifier to identify unlabeled examples
with the least confidence. Uncertainty sampling often presents
problems when outliers are selected. To solve the outlier problem,
this paper presents two techniques, sampling by uncertainty and
density (SUD) and density-based re-ranking. Both techniques
prefer not only the most informative example in terms of uncer-
tainty criterion, but also the most representative example in terms
of density criterion. Experimental results of active learning for
word sense disambiguation and text classification tasks using six
real-world evaluation data sets demonstrate the effectiveness of
the proposed methods.

Index Terms—Active learning, density-based re-ranking, sam-
pling by uncertainty and density, text classification, uncertainty
sampling, word sense disambiguation (WSD).

I. INTRODUCTION

I
N machine learning approaches to natural language pro-

cessing (NLP), supervised learning methods generally set

their parameters using labeled training data. However, creating

a large labeled training corpus is expensive and time-consuming

in some real-world applications, and is often a bottleneck to

build a supervised classifier for a new application or domain. For

example, building a large-scale sense-tagged training corpus for

supervised word sense disambiguation (WSD) tasks is a crucial

issue, because validations of sense definitions and sense-tagged

data annotation must be done by human experts, such as re-

ported in OntoNotes project (Hovy et al. [10]). Our study aims

to minimize the amount of human labeling efforts required for

a supervised classifier to achieve a satisfactory performance by

using active learning.

Among the techniques used to solve the knowledge bottle-

neck problem, active learning is a widely used framework in
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which the learner has the ability to automatically select the most

informative unlabeled examples for human annotation (Cohn

et al. [6], Seung et al. [21]). The ability of the active learner

can be referred to as selective sampling, of which two major

schemes exist: uncertainty sampling and committee-based sam-

pling. Uncertainty sampling (Lewis and Gale [13]) uses only

one classifier to identify unlabeled examples on which the clas-

sifier is least confident. Committee-based sampling (Seung et

al. [21], McCallum and Nigam [14]) generates a committee of

classifiers (always more than two classifiers) and selects the next

unlabeled example by the principle of maximal disagreement

among these classifiers. In this paper, we are interested in uncer-

tainty sampling, which in recent years has been widely studied

in natural language processing applications such as word sense

disambiguation (Chen et al. [5], Chan and Ng [4]), text classi-

fication (TC) (Lewis and Gale [13], Zhu et al. [29]), statistical

syntactic parsing (Tang et al. [23]), and named entity recogni-

tion (NER) (Shen et al. [22]).

From experimental results (Roy and McCallum [18], Tang et

al. [23]), in uncertainty sampling many selected unlabeled ex-

amples having high uncertainty, namely outliers, cannot provide

much help to the learner. Uncertainty sampling often fails by se-

lecting such outliers. Previous studies have attempted to solve

this problem. Cohn et al. [7] and Roy and McCallum [18] pro-

posed a method that directly optimizes expected future error on

future test examples. However, in real-world applications, their

methods are almost intractable due to the high computational

cost for selecting the most informative example from a large

unlabeled pool. Tang et al. [23] adopted a sampling scheme

of “most uncertain per cluster” for NLP parsing, in which the

learner selects the sentence with the highest uncertain score

from each cluster, and uses the density to weigh the selected

examples. In fact, the scheme of using the most uncertain ex-

ample per cluster still cannot solve the outlier problem faced by

uncertainty sampling. Shen et al. ([22]) proposed to select ex-

amples based on informativeness, diversity and density criteria.

In their work, the density of an unlabeled example is evaluated

within a cluster, and multiple criteria are linearly combined with

different coefficients. However, as different values of the coef-

ficients are associated with various applications, it is difficult to

determine those coefficients automatically.

This paper aims to overcome the shortcomings in related

work with respect to the outlier problem by presenting two

approaches based on the assumption that an unlabeled example

with high density degree is less likely to be an outlier (Zhu

et al. [29], Zhu et al. [27]). First, we present a sampling by

uncertainty and density (SUD) technique in which a new
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Fig. 1. General active learning algorithm.

uncertainty measure called density*entropy is adopted. Second,

we propose a new density-based re-ranking technique to select

the most representative example from the -best output of

entropy-based uncertainty sampling. It is noteworthy that these

proposed techniques are easy to implement, and can be easily

applied to several different learners, such as maximum entropy

(ME), naïve Bayes (NB) and support vector machines (SVMs).

The rest of the paper is structured as follows. Section II be-

gins with a discussion of the general active learning process and

three issues in developing a high-accuracy active learning tech-

nique. In Sections III and IV, we provide an in-depth analysis

of two proposed techniques, respectively. Experimental results

are given in Section V, followed by some further discussions in

Section VI. We conclude in Section VII with future work.

II. GENERAL ACTIVE LEARNING PROCESS

Formally, active learning is a two-stage process in which a
small number of labeled samples and a large number of unla-
beled examples are first collected in the initialization stage, and
a closed-loop stage of query (i.e., selective sampling process)
and retraining is adopted. The general active learning process
can be summarized in Fig. 1.

As reported in previous studies (Tang et al. [23], Chen et al.

[5], Zhu and Hovy [26]), active learning is a promising way
to speed up data annotation while minimizing human labeling
efforts. In practice, there are three crucial issues in developing a
high accuracy active learning technique, as described in Fig. 1.

1) Construction of an Initial Training Data Set: Tradition-
ally, the initial training data is generated at random, based on
an assumption that random sampling is likely to build an ini-
tial training set with the same prior data distribution as that of
the whole corpus. However, this situation seldom occurs in real-
world applications, because random sampling technique cannot
guarantee the selection of the most representative subset due to
limited size of initial training set (e.g., 10). In our previous study
(Zhu et al. [29]), a technique of sampling by clustering was ap-
plied to select some representative examples to form an initial
training set. The building of a representative initial training data

set is shown to be able to greatly improve active learning, par-
ticularly at its early stages.

2) Stopping Criterion: In principle, how to learn a stopping
criterion is a problem of estimation of classifier effectiveness
during active learning (Lewis and Gale [13]). Actually defining
an appropriate stopping criterion for active learning is a tradeoff
issue between labeling cost and effectiveness of the classifier.
In our previous studies (Zhu and Hovy [26], Zhu et al. [28], Zhu
et al. [30]), five simple and effective confidence-based stopping
criteria including max-confidence, min-error, overall-uncer-

tainty, classification-change, and minimum-expected-error

were proposed to automatically determine when to stop the
active learning process.

3) Selective Sampling Scheme: The third issue of active
learning is how to select the most informative example for
human annotation at each learning cycle, namely selective
sampling scheme. In this paper, we are interested in uncertainty
sampling (Lewis and Gale [13]) for pool-based active learning,
in which an unlabeled example with maximum uncertainty
is selected for human annotation at each learning cycle. The
maximum uncertainty implies that the current classifier (i.e.,
the learner) has the least confidence in its classification of
this unlabeled example. In other words, an unlabeled example
with maximum uncertainty is viewed as the most informative
case in uncertainty sampling. However, in some scenarios, an
unlabeled example with maximum uncertainty can be an outlier
(Roy and McCallum [18], Tang et al. [23], Zhu et al. [29]),
which is undesirable. In the following sections, we will discuss
the outlier problem of uncertainty sampling, and present two
effective techniques to solve this problem.

III. SAMPLING BY UNCERTAINTY AND DENSITY

A. Outlier Problem

In uncertainty sampling, the key issue of the selection of the

most uncertain unlabeled example is how to measure the uncer-

tainty of each unlabeled example . The well-known entropy

is a popular uncertainty measurement widely used in previous

studies on active learning with uncertainty sampling (Tang et

al. [23], Chen et al. [5], Zhu and Hovy [26]). The uncertainty

measurement function based on the entropy can be expressed as

follows:

(1)

where is the a posteriori probability of the output class

given the input . is the un-

certainty measurement function based on the entropy estima-

tion of the classifier’s posterior distribution. In the remainder of

this paper, uncertainty sampling based on entropy criterion is

considered as the baseline method, and called traditional uncer-

tainty sampling in the following sections.

As mentioned in previous studies on active learning (Roy and

McCallum [18], Tang et al. [23], Zhu et al. [29]), uncertainty

sampling often fails by selecting outliers. Schein and Unga [20]

also reported that traditional uncertainty sampling sometimes

shows unsatisfactory performance on data sets with noise. To
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Fig. 2. Two unlabeled examples � and � with maximum uncertainty at the
�th learning iteration. Solid circles and cross circles denote labeled samples with
different labels in current training data. Blank circles denote unlabeled examples
being queried. The solid line represents the corresponding decision boundary.

simplify our discussion, we give an example to explain the out-

lier problem, shown in Fig. 2.

The motivation behind uncertainty sampling is to find some

unlabeled examples near decision boundaries, and use them to

clarify the position of decision boundaries (Zhu et al. [29]). In

uncertainty sampling, the current classifier considers unlabeled

examples near decision boundaries as the most informative ex-

amples (i.e., the most uncertain cases). In other words, uncer-

tainty sampling assumes that an unlabeled example with max-

imum uncertainty (i.e., very close to decision boundaries) has

the highest chance to change the decision boundaries, and se-

lecting such an unlabeled example for the next learning iteration

can provide more help to the active learner.

In Fig. 2, two unlabeled examples, marked by and , have

maximum uncertainty at the th learning iteration and are to

be considered. There are three unlabeled examples very close

or similar to but none for . We think example B is more

representative than example A, and A is likely to be an outlier.

Adding B to the training set will thus help the learner more than

adding A.

B. Density*Entropy Measure

Based on above analysis, we introduce the concept of den-

sity to determine whether an unlabeled example is highly rep-

resentative. The density degree of an unlabeled example can be

evaluated based on how many unlabeled examples are similar or

close to it. High-density degree examples are highly representa-

tive. That is, an example with high density degree is less likely

to be an outlier.

Based on the above analysis, we make an assumption that un-

labeled examples near the decision boundary and very close to

other examples and are more important than those that are iso-

lated (i.e., likely to be outliers). Therefore, the ideal selective

sampling criterion should combine the best of uncertainty and

density criteria together. We prefer not only the most informa-

tive example in terms of uncertainty, but also the most represen-

tative example in terms of density for active learning.

In obtaining the density degree, the traditional cosine measure

is adopted to estimate the similarity between two examples, that

is

(2)

where and are the feature vectors of examples and .

In practice, the unlabeled corpus is often very large (e.g.,

more than tens of thousands of unlabeled examples). It is there-

fore unreasonable to exhaustively calculate similarities between

any example and all the others in order to obtain the density de-

gree. Tang et al. [23] and Shen et al. [22] applied a technique

of evaluating the density of an example within a cluster. In their

work, the unlabeled data set is first clustered into a predefined

number of clusters using K-Means clustering. The density of an

example can be defined as the average similarity between itself

and the other examples within the same cluster (Shen et al. [22]).

Our first intuition in estimating density is to apply a clus-

tering-based technique. However, there are three reasons that

may prohibit us from doing so. First, it is difficult to answer

how many clusters are appropriate for clustering-based density

evaluation in a specific active learning task. Second, as done in

Tang et al. [23], the average size of the resulting clusters is still

very large. In this situation, the resulting density values of un-

labeled examples are close to each other. Finally, experimental

results show that the size distribution of the resulting clusters is

very skewed. It causes density estimation to be biased towards

small clusters.

An alternative approach would be the use of a similarity

score threshold, for which a similarity score above a predefined

threshold indicates similar examples. However, it is still an open

question how to predefine a proper similarity score threshold

for different active learning tasks.

To avoid these critical issues, in this work we present a new

method called K-Nearest-Neighbor-based density (KNN-den-

sity) measure in which the density of an example is quantified

by the average similarity between this example and the other

most similar examples (i.e., nearest neighbors).

Given a set of most similar examples

of the unlabeled example , the average

similarity between example and its most similar

examples can be calculated by

(3)

As discussed above, we prefer to select unlabeled examples

with maximum uncertainty and highest density for human anno-

tation, which will be of high value to the learner. Along this line

of thinking, by considering uncertainty and density simultane-

ously, we propose a new uncertainty sampling method, named

sampling by uncertainty and density (SUD). To combine uncer-

tainty and density, we adopt a common approach named den-

sity*entropy in which the density of an unlabeled ex-
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ample is used as the coefficient of its uncertainty , de-

fined by

(4)

The motivation of our SUD method is to use the density factor

to adjust the uncertainty of an unlabeled example . A

more uncertain example with high density should be assigned

with a higher uncertainty value. In other words, the SUD method

favors the example with high uncertainty and high density at

each learning iteration.

C. Optimization

Because the unlabeled corpus can be very large, optimization

has to be used in order to make the sampling by uncertainty and

density more practical. Several approaches are possible.

First, a general approach would re-estimate the density of

each unlabeled example at each learning iteration. When the

scale of the unlabeled pool is very large, such re-estimation

would be prohibitive. The simplest approximation is that those

most similar examples of each example can be calculated in

advance and fixed during the active learning process. Unfortu-

nately, this method may cause negative effects on performance,

because it is problematic to assume that the density of each un-

labeled example cannot be changed during active learning.

Second, an alternative approximation is to first calculate the

similarity between any two different unlabeled examples in the

beginning of active learning. For each example , we can rank

the other examples by the similarity score. In this way, the den-

sity estimation for each unlabeled example is very efficient

based on top- examples in its rank list. In the following com-

parison experiments, we adopt this approach to make SUD more

efficient for implementation. Some details will be described in

Section V-C.

Finally, the pool of unlabeled examples can be reduced by

random sub-sampling (Roy and McCallum [18]). The density

can be estimated using only a subset of the unlabeled pool, es-

pecially when the unlabeled pool is very large.

IV. DENSITY-BASED RE-RANKING

In uncertainty sampling, the entropy-based uncertainty mea-

sure defined in (1) is based on posterior probabilities produced

by a probabilistic classifier. It would not work for active learning

with non-probabilistic classifiers. For example, a SVM-based

classifier does not yield probabilistic output. Instead, it pro-

duces a decision margin. This same limitation is applied to SUD

scheme.

To overcome this limitation, this section describes how the

ideas from selective sampling can be extended to re-ranking

tasks. -best re-ranking techniques have been successfully ap-

plied in NLP tasks, such as machine translation (Zhang et al.

[25]), syntactic parsing (Collins and Koo [8]), and summariza-

tion (Hovy and Lin [9]). To our knowledge, there has been no

attempt to use re-ranking techniques for selective sampling in

active learning.

There are two processing steps in active learning with

re-ranking technique. In the first step, a basic learner is used

Fig. 3. Active learning with re-ranking technique.

to generate the -best candidates in terms of the uncertainty

criterion at each learning cycle. After that, in contrast to the

SUD method, the density measure is used to rank these N-best

candidates. The top candidate from this list, in terms of the

density criterion, is selected for human annotation. The density

criterion can be implemented based on the average similarity

function defined in (3). This method is called den-

sity-based re-ranking. The density-based re-ranking stage aims

to select the unlabeled example with the highest density from

these candidates generated by the basic learner. In this case,

we think the re-ranked example is less likely to be an outlier.

This technique can be applied to active learning with proba-

bilistic or non-probabilistic classifiers, because re-ranking tech-

nique is independent of the type of classifier used as the basic

learner in active learning. For example, Shen et al. [22] ap-

plied an SVM-based classifier in active learning for named en-

tity recognition task in which the uncertainty of each unlabeled

example is estimated based on margin. The example with min-

imum margin is viewed as the most uncertain case. The -best

candidates selected by the SVM-based active learner can be

used for re-ranking.

The procedure of active learning with re-ranking is summa-

rized in Fig. 3

V. EVALUATION

A. Datasets

To evaluate the effectiveness of various active learning

methods including uncertainty sampling, sampling by uncer-

tainty and density (SUD), and density-based re-ranking, in this

section we constructed some comparison experiments of active

learning for two typical tasks: word sense disambiguation

and text classification, using six publicly available real-world

datasets as shown Table I.

1) Word Sense Disambiguation Task: Three publicly avail-

able real-world data sets are used in this task: Interest, Line, and

OntoNotes. The Interest data set was developed by Bruce and

Wiebe ([3]). It consists of 2369 sentences containing the noun

“interest” with its correct sense manually labeled. The noun “in-

terest” has six different senses in this data set. Interest data set

has been previously used for WSD study (Ng and Lee [16]).
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TABLE I
DESCRIPTIONS OF DATA SETS USED IN ACTIVE LEARNING EVALUATION,

INCLUDING: THE NUMBER OF CLASSES AND CLASS DISTRIBUTION

In the Line data set, each instance of the word “line” has been

tagged with one of six WordNet senses. The Line data set has

been used in some previous studies on WSD (Leacock et al.

[11]). The OntoNotes project (Hovy et al. [10]) uses the WSJ

part of the Penn Treebank. The senses of noun words occur-

ring in OntoNotes are linked to the Omega ontology (Philpot et

al. [17]). In this experiment, we focus on the ten most frequent

nouns1 previously used for active learning (Zhu and Hovy [26]):

rate, president, people, part, point, director, revenue, bill, fu-

ture, and order.

2) Text Classification Task: Three publicly available data

sets are used in this active learning comparison experiment:

Comp2a, Comp2b, and WebKB. The Comp2a consists of the

comp.os.ms-windows.misc and comp.sys.ibm.pc.hardware sub-

sets of 20-NewsGroups. The Comp2b dataset consists of comp.

graphics and comp.windows.x categories from 20-NewsGroups.

The WebKB dataset was widely used in text classification re-

search (McCallum and Nigam [15]). We used the four most

populous categories: student, faculty, course, and project. These

datasets have been previously used in active learning for text

classification (Roy and McCallum [18]; Schein and Ungar [20]).

B. Experimental Settings

We utilize a maximum entropy (ME) model (Berger et al.,

[2]) to design the basic classifier for WSD and TC tasks. The

advantage of the ME model is its ability to freely incorporate

features from diverse sources into a single, well-grounded sta-

tistical model. A publicly available ME toolkit2 was used in

our experiments. To build the ME-based classifier for WSD,

three knowledge sources are used to capture contextual informa-

tion: unordered single words in topical context, POS of neigh-

boring words with position information, and local collocations,

which are the same as the knowledge sources used in (Lee and

Ng, [12]). The first type of features corresponds to a set of

words occurring with the disambiguated word in the same

sentence. The second type of features denotes a set of part-of-

1See http://www.nlplab.com/ontonotes-10-nouns.rar

2See http://homepages.inf.ed.ac.uk/s0450736/maxent_ toolkit.html

speech (POS) tags of words to left or right of . Local col-

location features are words adjacent to the word to be disam-

biguated. In the design of the text classifier, the maximum en-

tropy model is also utilized, and no feature selection technique

is used.

In the following comparison experiments, the algorithm starts

with an initial training set of ten labeled examples, and selects

the most informative example at each learning iterationPT. A

tenfold cross-validation was performed. All results reported are

the average of ten trials in each active learning process.

Since the class distributions of most data sets shown in Table I

are skewed, we adopted the F1 measure as the performance

evaluation metric, because it combines the precision and recall

estimated for each class separately. To globally compare dif-

ferent active learning methods, we adopted the deficiency metric

(Baram et al. [1]) that has been widely used in previous studies

(Schein and Unga [20]). The deficiency metric between two ac-

tive learning methods REF and AL is defined by

(5)

where REF is uncertainty sampling method (i.e., the baseline

active learning method in this work), and AL is one of our ac-

tive learning methods such as SUD or density-based re-ranking.

and denote the evaluation performance (i.e.,

F1 value in this work) at th learning iteration of active learning

methods REF and AL, respectively. refers to the evaluation

stopping point which is represented as the number of annotated

examples at the stopping point. Smaller deficiency value (i.e.,

) indicates AL method is better than REF method. Con-

versely, a larger value (i.e., ) indicates a negative result.

C. Results of Different K Values for Density Estimation

To determine an appropriate value for density estimation,

we designed some experiments on the estimation of density for

active learning with SUD on Interest dataset. In these experi-

ments, varies between 5 and 200.

Fig. 4 and Table II summarize the results of SUD methods

with different values for density estimation on the Interest

dataset. Table II shows that the best performance (0.510 defi-

ciency) was achieved by SUD with . In the following

comparison experiments, we set value to 10 for density esti-

mation.

The second optimization approach mentioned in

Section III-C is used to estimate the density for each unlabeled

example during active learning. To implement this approach,

we first calculate the similarity of each example pair in the

beginning of active learning. For each unlabeled example, all

other examples in the unlabeled pool can be first ranked in

the decreasing order of similarity to the current example. The

similarity of each example pair is estimated only one time

during the whole active learning process. If an example is

chosen at the th learning iteration, we remove it immediately

from the ranked list of each of the rest of unlabeled examples

for the next learning iterations. In practice, it only incurs little

computational cost to calculate the density of an unlabeled

example by looking up top-K examples in its ranked list

in each learning iteration. Therefore, the implementation of
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Fig. 4. Results of uncertainty sampling and SUD methods for density estimation in active learning on the Interest dataset, with � varying between 5 and 200.
Confidence bars (with confidence at 95% level) indicate the variability of competing active learning techniques.

TABLE II
AVERAGE DEFICIENCY VALUES ACHIEVED BY SUD METHODS

WITH DIFFERENT � VALUES, COMPARED WITH UNCERTAINTY

SAMPLING (REF). THE STOP POINT IS 150. THE BOLDFACE

NUMBER INDICATES THE BEST PERFORMANCE

density estimation used by SUD and density-based re-ranking

methods is very efficient. In the density-based re-ranking

algorithm, the number of candidates (i.e., in step 2) is set

to 10 based on analysis of the experimental results shown in

Fig. 4.

D. Experimental Results

Fig. 5 and Table III show the results of various active learning

methods for WSD and TC tasks. Fig. 5 shows that in comparison

to uncertainty sampling, SUD achieves statistically significant

improvement on 4 out of 5 datasets: Interest, Comp2a, Comp2b,

and WebKB. On the Line dataset, SUD achieves a deficiency of

0.98 which indicates slightly better performance than that of un-

certainty sampling. Similarly, as seen from Fig. 5, compared to

uncertainty sampling, density-based re-ranking achieves statis-

tically significant improvement on the Line, Comp2a, Comp2b,

and WebKB data sets, and similar performance on the Interest

dataset. It is noteworthy that SUD outperforms density-based

re-ranking on the Interest, Comp2b and WebKB datasets. How-

ever, density-based re-ranking outperforms SUD on the Line

dataset.

Comparing results on 10 subsets of OntoNotes shown in

Table III, SUD and re-ranking methods on most subsets achieve

similar or slightly better performance than uncertainty sam-

pling. The anomaly for SUD lies on the point and order subsets,

TABLE III
AVERAGE DEFICIENCY VALUES ACHIEVED BY VARIOUS ACTIVE LEARNING

METHODS, COMPARED WITH UNCERTAINTY SAMPLING. THE STOPPING POINT

IS 150. THE BOLDFACE NUMBERS INDICATE THE WORSE PERFORMANCE

and for density-based re-ranking on the president and revenue

subsets. From Table I we can see that those disambiguated

words in OntoNotes have very skewed sense distributions. By

analyzing the experimental results we found that density crite-

rion makes the learner tend to select the examples belonging

to the predominant class. In such a case, the resulting classifier

would achieve unsatisfactory F1 performance. In other words,

the density criterion seems to have possibly negative effects on

active learning performance in terms of F1 metric on data sets

that have very skewed class distribution.

As discussed in Section IV, our density-based re-ranking

technique can be applied to active learning with non-proba-

bilistic classifiers such as SVMs. We design some experiments

applying density-based re-ranking for active learning with

SVMs to the Interest dataset, as shown in Fig. 6. In these

experiments, we adopted the one-against-all strategy to build
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Fig. 5. Effectiveness of various selective sampling techniques in active learning
for WSD and TC tasks on five evaluation data sets. Confidence bars (with con-
fidence at 95% level) indicate the variability of competing active learning tech-
niques.

a multi-class SVM classifier which is an ensemble of binary

classifiers. In this case, the uncertainty of an unlabeled example

can be defined as the absolute value of the difference between

Fig. 6. Results of margin-based uncertainty sampling and density-based
re-ranking methods for active learning with SVMs on the Interest data set.

the two largest outputs of the decision functions (Schapire et

al. [19], Shen et al. [22], Vlachos [24]).

Fig. 6 shows the effectiveness of applying uncertainty sam-

pling and density-based re-ranking for active learning with

SVMs. Compared with margin-based uncertainty sampling,

density-based re-ranking achieves statistically significant im-

provement on the Interest dataset.

In SUD and density-based re-ranking, the density criterion

is used to avoid selecting unlabeled examples with low den-

sity degree, which are likely to be outliers. It is noteworthy

to investigate how much agreement there is between the ex-

amples selected by uncertainty sampling and one of our den-

sity-based methods. In the following experiments, the agree-

ment percentage (AP) between two methods M1 and M2 is es-

timated by

(6)

where is the total number of learnt examples until the current

iteration. is the total number of same exam-

ples learnt by M1 and M2 until the current iteration.

Figs. 7 and 8 show that the agreement between uncertainty

sampling and our density-based methods for active learning on

the Interest dataset, respectively. Fig. 7 shows that the highest

agreement of 31% is achieved between SUD and density-based

re-ranking, and the lowest agreement of 11% is obtained by the

pair of uncertainty sampling and SUD at the 150th iteration.

For the pair of uncertainty sampling and SUD, the first same

chosen example appears in the 75th learning iteration. The first

same chosen example for the pair of uncertainty sampling and

density-based re-ranking methods appears at the 25th iteration.

However, since SUD and density-based re-ranking methods use

the density criterion, the first example selected by both methods

is the same.

In active learning with SVMs, margin-based uncertainty sam-

pling and density-based re-ranking obtains only 15% agreement

at the 150th iteration as shown in Fig. 8. It is interesting to see

that the first chosen example by margin-based uncertainty sam-

pling and density-based re-ranking methods is the same. How-

ever, the second same example chosen by both methods appears

at the 20th iteration.
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Fig. 7. Results of agreement between the examples selected by different se-
lective sampling methods for active learning with ME-based classifier on the
Interest data set.

Fig. 8. Results of agreement between the examples selected by margin-based
uncertainty sampling and density-based re-ranking methods for active learning
with SVMs on the Interest data set.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the outlier problem of uncertainty

sampling, and proposed two approaches, SUD and den-

sity-based re-ranking, in which density and uncertainty criteria

are considered simultaneously to select the most informative

unlabeled example for human annotation at each learning

cycle. The density-based re-ranking techniques can be applied

for committee-based sampling for active learning, but for the

purpose of applying our SUD to committee-based sampling,

we should adopt other uncertainty measurements such as vote

entropy (Seung et al. [21]) to measure the uncertainty of each

unlabeled example.

Misclassified unlabeled examples may convey more infor-

mation than correctly classified unlabeled examples, because

learning such misclassified examples has high chance of af-

fecting the position of decision boundaries in the next learning

cycle (Chen et al. [5], Zhu et al. [30]). However, in practice,

it is almost impossible to exactly recognize which unlabeled

example is misclassified, because the true label of each unla-

beled example is unknown in advance. In our future work, we

plan to study how to automatically determine whether an unla-

beled example has been misclassified. One line of thinking is

to make an assumption that an unlabeled example may be mis-

classified if an unlabeled example is automatically assigned to

two different labels during two recent consecutive learning cy-

cles.3 We think that the switching of a labeling decision at the

decision boundary may be attributable to the fact that the unla-

beled example is misclassified. In future work, we will further

study how to make use of misclassified information to select the

most useful examples for human annotation, and how to apply

our proposed techniques in the setting of online active learning

with probabilistic and non-probabilistic classifiers.
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