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Abstract

Shift-reduce parsing has been studied extensively for diverse grammars due to the simplicity

and running efficiency. However, in the field of constituency parsing, shift-reduce parsers

lag behind state-of-the-art parsers. In this paper we propose a semi-supervised approach for

advancing shift-reduce constituency parsing. First, we apply the uptraining approach (Petrov,

S. et al. 2010. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language

Processing (EMNLP), Cambridge, MA, USA, pp. 705–713) to improve part-of-speech taggers

to provide better part-of-speech tags to subsequent shift-reduce parsers. Second, we enhance

shift-reduce parsing models with novel features that are defined on lexical dependency inform-

ation. Both stages depend on the use of large-scale unlabeled data. Experimental results show

that the approach achieves overall improvements of 1.5 percent and 2.1 percent on English

and Chinese data respectively. Moreover, the final parsing accuracies reach 90.9 percent and

82.2 percent respectively, which are comparable with the accuracy of state-of-the-art parsers.

1 Introduction

Due to the simplicity and running efficiency, shift-reduce parsing has been studied

extensively for a variety of grammars, ranging from constituency parsing (Sagae

and Lavie 2005; Sagae and Lavie 2006; Zhang and Clark 2009) through depend-

ency parsing (Yamada and Matsumoto 2003; Nivre 2004; Huang, Jiang and Liu

2009b) to Combinatory Categorial Grammar parsing (Zhang and Clark 2011). In

dependency and Combinatory Categorial Grammar parsing, shift-reduce parsing

is among the best-performing algorithms (Huang and Sagae 2010; Zhang and

Clark 2011). However, compared with commonly used statistical parsers, such as the

Charniak–Johnson re-ranking parser (Charniak and Johnson 2005) and the Berkeley

parser (Petrov and Klein 2007), there still exists room to improve the performance

of shift-reduce constituency parsers.

Prior efforts on improving shift-reduce constituency parsing focus on the following

two directions. One direction is to design better training and decoding algorithms.

For example, in the respect of decoding, Sagae and Lavie (2006) proposed the best-

first search strategy to expand the search space. In the respect of training, Zhang and

†Corresponding author.
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Clark (2009) replaced local classifiers with a global learning algorithm. The other

direction is to enrich feature representations for better shift-reduce constituency

parsing (Sagae and Lavie 2005; Sagae and Lavie 2006; Wang, Sagae and Mitamura

2006; Zhang and Clark 2009). All the previous works listed above discuss shift-

reduce parsing in the setting of supervised learning. In this paper we instead focus

on semi-supervised shift-reduce constituency parsing, which, to the best of our

knowledge, has not been studied before. Specifically, considering that shift-reduce

parsers typically take part-of-speech (POS) tagging as a preliminary step and the

performance of shift-reduce parsers is heavily dependent on the quality of input POS

tags,1 we propose a two-stage approach: We first improve POS taggers to supply

syntactic parsers with better POS tags and then enrich feature representation of a

baseline shift-reduce parser. Both stages improve performance by utilizing large-scale

unlabeled data.

In the respect of POS tagging preprocessing, most previous work on shift-reduce

parsing simply utilizes off-the-shelf POS taggers. In terms of the performance metric

of per-token accuracy, those POS taggers seem difficult to improve further, especially

for languages that have been extensively studied, for example English (Manning

2011). However, if we go beyond stand-alone POS taggers, we find that parsers

such as the Berkeley parser can also be used to assign POS tags (together with

parse trees) to sentences. Moreover, POS tags supplied by the parsers give rise to

substantially higher shift-reduce parsing accuracy than POS tags coming from state-

of-the-art POS taggers (see Section 6.1.1). Although it is practically insignificant to

utilize a parser, say the Berkeley parser, to feed POS tags to a shift-reduce parser,

we can actually use such parsers to help construct better POS taggers for shift-

reduce parsing. Hereafter, parsers that integrate POS tagging and syntactic parsing

in a single step are referred to as integrated parser, examples of which include the

Berkeley and Bikel parsers (Bikel 2004).2 Briefly, our approach to improving POS

taggers is to train a stand-alone POS tagger on the output of integrated parsers on

large-scale unlabeled data.

To improve shift-reduce parsers, one natural idea is to follow the direction of our

approach to POS tagging, that is, to train a shift-reduce parser on the combination of

human-labeled training data and auto-parsed data produced by integrated parsers.

However, such an approach is extremely time-consuming for shift-reduce parsers

that require to parse training sentences repeatedly (the baseline parser used in this

paper is one such instance). Thus, the approach proposed in this paper is to mine

information from auto-parsed data in an off-line manner and then enrich feature rep-

resentation based on the obtained information. Specifically, we use the information

of lexical head–modifier3 relations (also known as lexical dependencies) (Collins

1 Hatori, Matsuzaki and Tsujii (2011) studied joint POS tagging and dependency parsing
in a shift-reduce parsing framework. However, the pipeline approach to POS tagging and
shift-reduce parsing is still the mainstream.

2 The Bikel parser has two input formats: with/without POS tags respectively. We use the
latter one in this paper.

3 By ‘head–modifier’ we mean the linguistic notion that a word (modifier) modifies another
word (head).
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1996). Previous work on other constituency parsers has shown the effectiveness

of lexical dependency information on disambiguating syntactic structures (Collins

1996, 1997; Eisner and Satta 1999). But in shift-reduce constituency parsing such

information is not fully used. For instance, Zhang and Clark (2009) encoded lexical

information as features but ignored dependency information between words. Sagae

and Lavie (2005) and Wang et al. (2006) only incorporated as features the most

recently recognized (left and right) modifiers of some designated words. By contrast,

this paper defines features that explicitly encode the information of whether words

in an input sentence tend to have head–modifier relations. Moreover, we propose

to obtain lexical dependency information from large-scale auto-parsed data instead

of human-labeled treebank data because lexical dependencies obtained from the

latter source suffer from data sparseness (Section 5.2.1). We focus on bigram

and trigram lexical dependencies from automatically parsed trees. Based on the

extracted lexical dependencies, we design a set of features to enhance the baseline

parser.

The two-stage approach described above can be regarded as a variant of the

uptraining approach (Petrov et al. 2010) where auto-parsed data produced by the

Berkeley parser is used as additional training data to improve POS taggers and

shift-reduce parsers for dependency parsing. The most significant difference between

our work and that of Petrov et al. (2010) lies in the second stage: We do not simply

combine auto-parsed data to improve shift-reduce parsing; we instead extract partial

information from auto-parsed data. In addition, it is notable that the approach to

improving shift-reduce parsing is actually independent of the parsers that are used

to generate auto-parsed data. In this paper we choose to utilize the same auto-parsed

data as with POS tagging for the purpose of consistency. Experimental results show

that our approach can improve shift-reduce constituency parsing to 90.9 percent on

English and 82.2 percent on Chinese. In addition, our parser outperforms previously

reported shift-reduce constituency parsers while maintaining the efficiency.

The remainder of this paper is organized as follows. Section 2 discusses in detail

the related work. In Section 3 we describe the baseline parser and baseline features

that are used in this paper. Section 4 presents the approach to improving POS

taggers and the shift-reduce baseline parser. Section 5 introduces experimental setup

and Section 6 presents the detailed experimental results. Finally, we conclude our

work in Section 7.

2 Related work

Semi-supervised approaches to POS tagging have been widely studied.

Merialdo (1994) attempted to improve a Hidden Markov Model-based tagger with

expectation maximization. However, the results that Merialdo (1994) have achieved

are negative. Wang et al. (2007) studied co-training with two distinct POS taggers but

their approach seems to achieve positive results only when human-labeled training

set is small in size. More recently, alternative methods based on system combination

were proposed. Suzuki and Isozaki (2008) proposed an extension of semi-supervised

conditional random fields by combining supervised and unsupervised probability

models. Sφgaard (2010) studied system combination in a tri-training framework.
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Clark, Curran and Osborne (2003) adopted the self-training approach and achieved

positive results only when human-labeled data are limited. Huang, Eidelman, and

Harper (2009a) reported positive results using self-training of a hidden Markov

model POS tagger. Unlike the previous work, this paper adopts the uptraining

approach which improves stand-alone POS taggers with the aid of integrated POS

taggers. The uptraining approach was first proposed in Petrov et al. (2010), where

the Berkeley parser was used to improve dependency parsers in a target domain. In

this paper we adapt the approach to in-domain POS tagging.

Shift-reduce parsing has been widely studied due to its simplicity and effi-

ciency. For constituency parsing, Sagae and Lavie (2005) proposed a classifier-

based shift-reduce parser which was extended with the best-first search strategy

in Sagae and Lavie (2006). Wang et al. (2006) adapted the parser in Sagae and

Lavie (2005) to Chinese parsing and compared some representative classifiers. Zhang

and Clark (2009) proposed a global learning algorithm to replace local classifiers.

Shift-reduce parsing was also widely applied to parsing with other grammars (Nivre

2004; Huang et al. 2009b; Huang and Sagae 2010; Zhang and Clark 2011). In

this paper we focus on constituency parsing, especially on improving Zhang and

Clark (2009) with a semi-supervised approach. To the best of our knowledge, semi-

supervised shift-reduce constituency parsing has not been studied before. In this

respect, self-training (and its variant, the uptraining approach) is the most successful

approach (McClosky, Charniak and Johnson 2006; Huang and Harper 2009; Huang,

Harper and Petrov 2010; Petrov et al. 2010). The difference between self-training

and our approach is that we use partial information derived from auto-parsed data

instead of entire automatically parsed trees. Chen et al. (2012a) and Noord (2007)

exploited lexical dependencies from unlabeled data for dependency and Head-

driven Phrase Structure Grammar parsing respectively. In this paper we for the first

time use lexical dependency information for advancing state-of-the-art shift-reduce

constituency parsers. It is worth emphasizing that although we follow the approach

of Chen et al. (2012a) for lexical dependency extraction, new features proposed in

this paper are different from the features proposed in Chen et al. (2012a) because

lexical dependencies are used for different parsers. Specifically, Chen et al. (2012a)

aims to improve a graph-based dependency parser whereas this paper focuses on a

transition-based constituency parser.

3 Baseline parser

The baseline parser used in this paper is the beam-search shift-reduce parser (Zhang

and Clark 2009). To our knowledge, this parser achieves the best performance among

all the shift-reduce constituency parsers that have been reported before.

3.1 The shift-reduce parsing process

The shift-reduce process in the baseline parser assumes binary-branching trees,

so binarization and debinarization are required for transforming training data and
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parsing output respectively (Zhang and Clark 2009). Given an input sentence (words

and POS tags), any possible parse tree yielding the sentence corresponds exactly to

one sequence of states. Formally, each state in the sequence is denoted by a tuple

〈S, Q〉, where S is a stack containing partial parses that have been recognized and Q

is a queue of word-POS pairs that remain unprocessed. In particular, the initial state

is 〈φ,w1 . . . wn〉, where S is empty and Q contains the entire input sentence. The final

state is 〈S, φ〉, where S contains a single parse tree with a pre-designated root label

and Q is empty. Thus, the shift-reduce parsing process is a transition process from

the initial state to the final state by performing a sequence of the following actions:

• shift, which moves a pair of word and POS tag from the head of the queue

to the stack. Here the queue is required to be non-empty.

• reduce-unary-X, which extends the top item on the stack by applying a unary

rule and then replaces the top item with the newly generated constituent.

Here X represents a treebank phrase label, such as NP, which is to be used

as the root label of the new constituent.

• reduce-binary-{L/R}-X, which moves top two items out of the stack and

pushes a new item onto the stack. The new item has X as its root label

and consists of two children with the first popped item becoming the right

child and the second popped item becoming the left child. The switch L/R

indicates whether the left (L) or the right (R) child becomes the head child.

• terminate, which pops the root node off the stack and ends parsing. This

action is applicable only when the stack contains a single parse and the

queue is empty.

3.2 Beam-search extension

The shift-reduce parsing process described above can be extended with beam search,

as presented in Algorithm 1. The algorithm starts by initializing a beam of size K

with the initial state. In each iteration after the initialization, states are popped in

turn out of the beam. For each popped state, all applicable actions are then evaluated

with respect to the state. Scored action-state pairs are sorted in a temporary priority

queue. When the beam gets empty, the top K highest scored action-state pairs are

fetched from the priority queue and next states corresponding to the action-state

pairs are inserted back into the beam. If the highest scored state in the beam is a

final state, it will be returned as the parsing result; else the iteration continues. The

algorithm has a time complexity of O(nK), where n is the sentence length and K is

the beam width.

3.3 Model and learning algorithm

To score an action A with respect to a state Y = 〈S, Q〉, we use a linear model as

defined by

Score(〈A, Y 〉) = −→w · Φ(〈A, Y 〉) =
∑
i

λifi(〈A, Y 〉)(1)
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Algorithm 1 Beam-search shift-reduce parsing

Input: a POS-tagged word sequence w1 . . . wn

beam size K and action set

1: B← {〈φ,w1 . . . wn〉} // initialize beam
2: loop
3: priority queue P = []
4: while B not empty do
5: state← pop(B)
6: for all act ∈ action set do
7: score← evaluate act for state
8: P·insert (〈score, act, state〉)
9: for i = 0 to K do

10: 〈score, act, state〉 ← Pop-Top (P)
11: next← apply act to state
12: insert next to B
13: best← highest-scored state in B
14: if best is complete then
15: return best

where fi(〈A, Y 〉) are features extracted jointly from the action A and state Y .

To learn parameters λi, we use the generalized perceptron algorithm proposed in

Collins (2002).

Generalized perceptron is an online learning algorithm that learns one instance at a

time. The basic procedure is to use the beam-search parsing algorithm (Algorithm 1)

to parse the yield of a gold parse tree. Whenever the gold partial parse is pruned

from the beam, parameters will be updated immediately and the learner moves to

the next training instance. Such a strategy is known as ‘early-update’ (Collins and

Roark 2004). Finally, model parameters are set to be an average of the weight

vectors obtained during online learning.

3.4 Baseline features

Features used in the baseline parser are similar to those used in Zhang and

Clark (2009). For convenience of reference, we repeat the features in Table 1, where

the symbol Si represents the ith item from the top of the stack S and the symbol Qi

denotes the ith item from the front end of the queue Q. The symbol w represents

the lexical head for an item; c represents the label for an item; and t denotes POS

of a lexical head. Note that Zhang and Clak (2009) also used bracket-related and

separator features for Chinese parsing, which have been removed in the latest release

of their parser. So in this paper we choose to ignore such language-specific features.

4 Our approach to better POS tagging and syntactic parsing

4.1 Uptraining of POS taggers

The uptraining approach to improving a POS tagger proceeds in the following two

steps. The corresponding pipeline is depicted in Figure 1.
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Table 1. A summary of baseline feature templates, where Si represents the ith item in

stack S and Qi denotes the ith item in queue Q from the front end

Description Templates

Unigrams S0tc, S0wc, S1tc, S1wc, S2tc, S2wc, S3tc, S3wc,

Q0wt, Q1wt, Q2wt, Q3wt,

S0lwc, S0rwc, S0uwc, S1lwc, S1rwc, S1uwc

Bigrams S0wS1w, S0wS1c, S0cS1w, S0cS1c,

S0wQ0w, S0wQ0t, S0cQ0w, S0cQ0t,

Q0wQ1w, Q0wQ1t, Q0tQ1w, Q0tQ1t,

S1wQ0w, S1wQ0t, S1cQ0w, S1cQ0t

Trigrams S0cS1cS2c, S0wS1cS2c, S0cS1wQ0t, S0cS1cS2w,

S0cS1cQ0t, S0wS1cQ0t, S0cS1wQ0t, S0cS1cQ0w

Unlabeled
Data

Integrated
Parser

Auto-
tagged
Data

Human-
Labeled
Data

Data
Combi-
nation

POS
Tagger

Fig. 1. The pipeline for uptraining of stand-alone POS taggers.

• Build an integrated parser on human-labeled training data and then use the

parser to automatically process unlabeled data. This way we get a set of

auto-tagged data.

• Merge human-labeled training data and auto-tagged data to get a data set

on which we train a POS tagger.

It is noteworthy that although the focus of this paper is on shift-reduce parsing,

the uptraining approach to improving POS taggers can benefit other parsers that

take POS tagging as a pre-processing step, e.g. the chunking-based parser (Tsuruoka,

Tsujii and Ananiadou 2009). Moreover, our approach requires labeled parse trees

be available for training integrated parsers. Such a requirement seems to be a severe

limitation at first sight. But it is not a real problem since we restrict our discussion

of improving POS taggers in the context of syntactic parsing.

The uptraining approach described above is very similar to the ideas of standard

self-training (Clark et al. 2003), with the difference that we use an integrated parser

rather than a POS tagger to assign POS tags to unlabeled data. In addition, our

approach aims to improve POS taggers for better syntactic parsing rather than
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Table 2. Types and ratios of first mistakes made by the baseline parser on the

English development set

ID Mistake type Ratio (count)

1. shift versus red-binary 47.8% (451)

2. shift versus red-unary 18.1% (171)

3. red-binary versus red-unary 5.4% (92)

4. red-binary-L/R-{X versus X∗} 16.5% (156)

5. red-unary-{X1 versus X2} 5.7% (54)

higher POS tagging accuracy. In this sense, the approach has a philosophy similar

to targeted self-training (Katz-Brown et al. 2011).

4.2 Enriching feature representation of shift-reduce parsing

4.2.1 Motivation

We first empirically analyze major sources of shift-reduce parsing errors with the

parsing results of the baseline parser on the English development set. The baseline

parser and a POS tagger are trained on the same human-labeled training data.

Regarding the parsing results, we are especially concerned with first mistakes that

the baseline parser makes because future mistakes are often caused by previous ones.

There are 944 first mistakes in total in the parsing results. Table 2 shows the types

and ratios of the top five most frequent first mistakes. Cases 1–2 consist of conflicts

between shift and reduce actions. Case 3 comprises conflicts between reduce-binary

and reduce-unary actions. Mistakes in cases 4–5 are caused by wrong choices of

labels, where the symbols X, X1, and X2 refer to treebank phrase labels, and the

symbol X∗ denotes a temporary label introduced when a constituent with label X is

binarized. We note in Table 2 that action conflicts between shift and reduce-binary

are the largest source of parsing errors, which cover nearly half of first mistakes.

Intuitively, lexical dependency information is beneficial to resolving shift and

reduce-binary conflicts. In the following, we use a real example to make clear

the intuition. Figure 2 illustrates the shift-reduce parsing process of the baseline

parser on a sentence with auto-assigned POS tags. The baseline parser proceeds

correctly until it reaches the state in Figure 2(a). At that point, there is a conflict

between reduce-binary (Figure 2(b)) and shift (Figure 2(c)) actions. We find that

the baseline parser wrongly chooses the reduce-binary action because the word bore

is (incorrectly) tagged as a verb.4 The baseline parser tends to group the words

preceding a verb as a constituent. However, if the parser is informed that the words

a and bore have a lexical dependency relationship, the parser may correct its choice

and switch to the shift action. In addition, we find that the human-labeled data used

to train the baseline parser do not contain lexical dependencies between a and bore.

We can see that extracting lexical dependencies solely from human-labeled training

4 All the occurrences of bore in the training data of the POS tagger have the POS tag VBD.
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Stack Queue

Previous
State

(a)

NP

PRP

He

VBZ

’s

DT

a

VBD

bore

Wrong
State

(b)

NP

PRP

He

SQ

VBZ

’s

DT

a

VBD

bore

Correct
State

(c)

NP

PRP

He

VBZ

’s

DT

a

VBD

bore φ

Fig. 2. An example of shift-reduce conflicts illustrating how lexical dependency information

helps to disambiguate the conflicts.

data has a data sparseness problem. This motivates us to utilize unlabeled data as

an additional source for lexical dependency extraction.

4.2.2 Data preprocessing

We propose to extract lexical dependencies from auto-parsed data. In principle, any

parser, including the baseline parser of this paper, can be used to process unlabeled

data to obtain automatically parsed trees. However, since we have produced large-

scale auto-parsed in the POS tagging step by using integrated parsers, we will

continue to use the same set of auto-parsed data. To simplify the extraction process,

we convert automatically parsed constituency trees into dependency trees with

Penn2Malt (or other conversion tools).5 Given an input sentence x, we denote

by y a dependency tree for x, and by H(y) a set that includes the words that

have at least one dependent. For each xh ∈ H(y), we have a dependency structure

Dh = (xLk . . . , xL1, xh, xR1 . . . xRm), where xLk . . . xL1 and xR1 . . . xRm are dependents of

the head xh. Either k and m may be zero.

4.2.3 Extraction of lexical dependencies

After the conversion from constituency trees to dependency trees, the following

lexical dependencies are read off from resulting dependency trees.

5 http://w3.msi.vxu.se/∼nivre/research/Penn2Malt.html
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Bigram lexical dependencies: If two words are connected by an arc in a dependency

tree, we claim these two words maintain a bigram lexical dependency. For pairs

of words that have dependencies, we make a record of the words as well as

their head–modifier relations. Formally, bigram lexical dependencies are denoted

as 〈w1, w2, L/R〉, where L/R indicates the direction of the dependency arc that

connects w1 and w2. Moreover, lexical dependencies are word-order sensitive, that is,

〈w1, w2, L〉 is regarded to be different from 〈w2, w1, R〉. Bigram lexical dependencies

extracted from a dependency structure Dh can be represented as 〈xLi, xh, R〉 and

〈xh, xRi, L〉.

Trigram lexical dependencies: Trigram lexical dependencies encode a head–modifier

relationship among three words. As with bigram lexical dependencies, trigram lexical

dependencies are also word-order sensitive. Although there exist distinct types of

trigram lexical dependencies (Koo and Collins 2010), in this paper we only consider

the type of trigram lexical dependency that has the first or the last word be the

head and that requires the other two words to be siblings among all the modifiers of

the head. Note that the two sibling modifiers are not necessary to be continuous in

sentences. Among the types of trigram lexical dependencies we have experimented,

this type is the only one that achieves positive effect on parsing accuracy. Such

lexical dependencies can be represented formally as 〈w1, w2, w3, L/R〉. Here the

switch L/R indicates the head among the three words. Specifically, the symbol L

specifies w1 to be the head and the symbol R designates w3 to be the head. In

addition, we also consider the special case that w2 is NONE, which indicates that w1

(w3) is the rightmost (leftmost) modifier of w3 (w1). Trigram lexical dependencies

extracted from a dependency structure Dh can be represented as 〈xLi, xLi−1, xh, R〉
and 〈xh, xRi−1, xRi, L〉.

4.2.4 Proposed features

After extracting all lexical dependencies, we group bigram and trigram lexical

dependencies separately into three categories according to their frequencies. Specific-

ally, if a dependency relation is among top-10 percent most frequent records, then

it receives the group tag high frequency (HF); if it is in top-20 percent, then we use

the tag Middle Frequency (MF); else we use the tag Low Frequency (LF). Formally,

the group strategy can be described as follows:

GR(r) =

⎧⎨
⎩
HF if r ∈ top-10 percent

MF else if r ∈ top-20 percent

LF otherwise

Although such a grouping strategy is heuristic in some sense, it has been proven

effective in Chen et al. (2012a). After grouping, we finally get two lists, containing

bigram and trigram lexical dependencies respectively.

Based on the bigram and trigram lexical dependency lists, we propose a set of

dependency features which is described in detail in the following. Here si denotes

the ith item from the top of the stack S , and qi is the ith item from the front end of
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Table 3. New features designed on the basis of lexical dependencies. Here the symbol
w represents a word and the symbol t represents a POS tag

Bigram dependency features

fL(s1w, s0w) fL(s1w, s0w)◦s1t◦s0t fR(s1w, s0w)

fR(s1w, s0w)◦s1t◦s0t fL(s1w, q0w)◦s1t◦q0t fL(s1w, q0w)

fR(s1w, q0w) fR(s1w, q0w)◦s1t◦q0t fL(s0w, q0w)

fL(s0w, q0w)◦s0t◦q0t fR(s0w, q0w)◦s0t◦q0t fR(s0w, q0w)

Trigram dependency features

fL(s1w, s1rdw, s0w) fL(s1w, s1rdw, s0w)◦s1t◦s0t fR(s1w, s0ldw, s0w)

fR(s1w, s0ldw, s0w)◦s1t◦s0t fL(s0w, s0rdw, q0w)◦s0t◦q0t fL(s0w, s0rdw, q0w)

fR(s0w,NONE, q0w) fR(s0w,NONE, q0w)◦s0t◦q0t

the queue Q. In addition, siw (sit) refers to the head word (POS) of si and qiw (qit)

refers to the word (POS) of qi.

Bigram dependency features: Bigram dependency features have a generic form of

fL/R(w1, w2), which returns a group tag (HF, MF, or LF) if the lexical dependency

〈w1, w2, L/R〉 is found in the bigram lexical dependency list; else it returns NULL.

The above feature template is instantiated into three pairs of features: {fL(s1w, s0w),

fR(s1w, s0w)}, {fL(s0w, q0w), fR(s0w, q0w)}, and {fL(s1w, q0w), fR(s1w, q0w)}.
We also combine the above features with POS tags of w1 and w2. Thus, we have

three more pairs of features in the generic form of fL/R(w1, w2) ◦ t(w1) ◦ t(w2), where

t(wi) represents the POS tag of the word wi. All the bigram dependency features are

listed in Table 3.

Trigram dependency features: Trigram dependency features have the generic form

of fL/R(w1, w2, w3). In this paper this feature template is instantiated into two

pairs of features. The feature function fL(s1w, s1rdw, s0w) returns a group tag if

〈s1w, s1rdw, s0w,L〉 is found in the trigram lexical dependency list, where s1rdw

denotes the rightmost modifier of s1w that has been recognized so far during

the shift-reduce parsing process. Note that s1rdw might be NONE if no right

modifiers have been recognized for s1w. The other trigram dependency features,

fR(s1w, s0ldw, s0w), fL(s0w, s0rdw, q0w), and fR(s0w, NONE, q0w), can be explained in

a similar way. As with bigram dependency features, POS tags are combined with the

above features to obtain richer feature representations. Trigram dependency features

used in the paper are summarized in Table 3.

4.2.5 Parsing with proposed features

To use the proposed dependency features, we only need to update the scoring

function defined in (1) (Section 2.3). The new scoring function is shown in the
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following:

Score′(〈A, Y 〉) =
∑
i

λifi(〈A, Y 〉) +
∑
j

λdj f
d
j(2)

where fi(〈A, Y 〉) are the baseline features listed in Table 1 and fdj refer to the

dependency features defined in Table 3.

5 Experimental setup

5.1 Data preparation

For English experiments, our labeled data came from the Wall Street Journal (WSJ)

corpus of the Penn Treebank (Marcus, Santorini and Marcinkiewiz 1993). Following

the divisions adopted in Charniak and Johnson (2005), we used sections 2–21 as

training data, section 24 for system development, and section 23 for performance

evaluation. In terms of English unlabeled data, we used the TIPSTER corpus

(LDC93T3A), which contains news articles from various sources, although we only

used Wall Street Journal articles.

For Chinese experiments, we used Chinese Treebank (CTB) version 5.1 (Xue et al.

2005) as labeled data. Specifically, articles 001–270 and 440–1151 were used as

training data, articles 271–300 were used for evaluation, and articles 301–325 were

used for development data. In respect of Chinese unlabeled data, we utilized the

corpus of Chinese Gigaword (LDC2003T09) after some basic cleanups.

We conducted necessary preprocessing on English and Chinese unlabeled data

before they were used. Specifically, we applied OpenNLP for English sentence

boundary detection and tokenization.6 For the Chinese unlabeled data, we retained

sentences that come from the body of documents, and then conducted sentence

boundary detection simply according to sentence ending punctuations, including

Chinese full stops, exclamation marks, and question marks. In addition, raw

sentences were automatically segmented with a Conditional Random Field-based

word segmenter, which achieves a segmentation accuracy of 97.2 percent on the

testing data of CTB 5.1.

Table 4 contains detailed statistics of all the data used in the experiments.

5.2 POS taggers and integrated parsers

In principle, a shift-reduce parser can be pipelined with any POS taggers. In this

paper we adopted representative POS taggers for English and Chinese experiments

respectively. Specifically, for English experiments, LAPOS (Tsuruoka, Miyao and

Kazama 2011) was applied which has the trait of looking ahead to POS tags to

the right of the prediction position. Hereafter, the LAPOS POS tagger is referred

to as POS-LAPOS. For experiments on Chinese data, we applied the Stanford POS

tagger (Toutanova et al. 2003). Hereafter, we refer to this POS tagger simply as

POS-Stanford.

6 http://incubator.apache.org/opennlp/
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Table 4. Data statistics, including the number of words and sentences, together with
average sentence length.∗ The numbers are approximate due to the use of automatic
preprocessing techniques

Language Statistics Train Dev Test Unlabeled

English

#sentences 39.8k 1.7k 2.4k 3,139.1k

#words 950.0k 40.1k 56.7k 76,041.4k∗

#ave. length 28.9 25.1 25.1 25.22∗

Chinese

#sentences 18.1k 350 348 9,871.3k

#words 493.8k 8.0k 6.8k 282,450.9k∗

#ave. length 27.3 19.5 23.0 28.6∗

With respect to integrated parsers, we used the Berkeley parser as well as the

emulation of Collins parsing model 2 (Collins 1999) in the Bikel parser. The parsers

represent two important research directions in the field of constituency paring:

unlexicalized PCFG with latent annotations, and lexicalized PCFG respectively.

Moreover, these two parsers have distinct performance levels in POS tagging and

syntactic parsing. Thus, we can empirically study the effect of performance of

integrated parsers on the results of our approach. In the experiments of POS tagging,

the POS tagging components in the Berkeley and Bikel parsers are regarded as a kind

of POS taggers (called integrated POS tagger) and are referred to as POS-Berkeley

and POS-Bikel respectively. In contrast, tagging systems, such as POS-LAPOS and

POS-Stanford, are named as stand-alone POS taggers or simply as POS taggers.

5.3 Performance scoring

We measured tagging accuracy of POS taggers with per-token accuracy, which is

defined to be the ratio of correctly tagged words over all the words in a test set. For

performance evaluation of syntactic parsing, we used EVALB to provide bracket

scoring as well as complete match scoring.7 For significance tests, we adopted the

comparator to compute p-value.8 When we use significance testing to compare two

results, we run compare.pl five times and then report the average of the obtained

five p-values.

5.4 Running parameters

We set the beam size of the shift-reduce parser to 16 in both training and

decoding phases which maintains a good trade-off between parsing efficiency and

accuracy (Zhang and Clark 2009). With respect to the iteration number of perceptron

learning, we tuned the parameter on the development sets and finally set the value to

twenty-one for both English and Chinese experiments. In the respect of stand-alone

POS taggers and integrated parsers, we used default parameter settings.

7 http://nlp.cs.nyu.edu/evalb
8 http://www.cis.upenn.edu/∼dbikel/download/compare.pl
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6 Experimental results

6.1 Improved POS tagging

We compared our approach to POS tagging with other representative approaches.

POS taggers that were experimented are summarized in the following:

1. Supervised training: It trains POS taggers solely on human-labeled training

data. Specifically, we trained POS-LAPOS (POS-Stanford) on human-labeled

English (Chinese) training data and obtained a POS tagger named Base-

LAPOS (Base-Stanford). The integrated POS taggers, POS-Berkeley and POS-

Bikel, were applied to both English and Chinese POS tagging. We always refer

to the resulting POS taggers as Base-Berkeley and Base-Bikel regardless of the

specific language.

2. Standard self-training: It applies a base POS tagger to process unlabeled data

and retrain the POS tagger on the combination of human-labeled training

data and automatically tagged data. For English and Chinese POS tagging,

Base-LAPOS and Base-Stanford are used as the base tagger respectively. The

resulting self-trained taggers are referred to as Self-LAPOS and Self-Stanford.

3. Uptraining: It trains POS-LAPOS on the combination of labeled training

data and auto-labeled POS data generated by Base-Berkeley (Base-Bikel) on

unlabeled data. The resulting tagger is referred to as Berkeley-LAPOS (Bikel-

LAPOS). For Chinese POS tagging, we replaced POS-LAPOS with POS-

Stanford and the resulting Chinese POS taggers are referred to as Berkeley-

Stanford and Bikel-Stanford.

When merging human-labeled data and auto-tagged data in the data combination,

we simply gave our human-labeled training data a relative weight of one.

6.1.1 Stand-alone POS tagger versus integrated POS tagger

Table 5 shows the comparative results of stand-alone and integrated POS taggers

in the setting of supervised learning. We evaluated POS taggers on the English

and Chinese test sets by using the metrics of per-token accuracy as well as parsing

accuracy of the baseline parser. As the results show, the integrated POS taggers

achieve lower per-token accuracy than the stand-alone POS tagger does on the

English test set, but they generate POS tags that result in higher parsing F1-scores

(≥0.7 percent). On Chinese data, the integrated POS taggers also provide better POS

tags for syntactic parsing. In this sense, we can infer that integrated POS taggers

are ‘better’ than stand-alone taggers. The reason is that integrated POS taggers use

syntactic information as high-level constraints during assigning POS tags. So it is

feasible to utilize an integrated POS tagger to improve a stand-alone POS tagger

for better syntactic parsing.

6.1.2 Uptraining versus self-training

Table 6 shows the results of Berkeley-LAPOS (uptraining) and Self-LAPOS (self-

training) on the English development set. This experiment serves the following two



Semi-supervised shift-reduce constituency parsing 15

Table 5. Comparative results between stand-alone and integrated POS taggers on
section 23 of the WSJ corpus and the CTB 5.1 test set

Language POS tagger POS accuracy (%) F1-score (%)

E
n
g
li
sh Base-LAPOS 97.46 89.4

Base-Berkeley 97.35 90.2

Base-Bikel 96.76 90.1

C
h
in

es
e Base-Stanford 95.38 80.1

Base-Berkeley 95.58 82.4

Base-Bikel 95.65 82.3

Table 6. Comparative results between uptraining (Berkeley-LAPOS) and standard
self-training (Self-LAPOS) on section 24 of the WSJ corpus

Sent. added POS accuracy (%) F1-score (%)

POS tagger 0 (Base-LAPOS) 97.21 88.4

B
er

k
el

ey
-L

A
P
O

S 100k 97.15 88.7

250k 97.12 88.7

500k 97.08 88.8

1000k 97.07 88.8

1,500k 97.06 88.8

2,000k 97.08 88.8

S
el

f-
L
A

P
O

S

100k 97.23 88.4

250k 97.19 88.3

500k 97.18 88.3

1,000k 97.21 88.4

1,500k 97.22 88.4

2,000k 97.21 88.4

purposes: (1) To demonstrate the advantage of uptraining over standard self-training

in improving POS taggers for better syntactic parsing, and (2) to show the effect

of different sizes of auto-tagged data that are used in uptraining. From the results

we can see that the self-training approach has trivial effect on both POS tagging

and parsing accuracy. Such results coincide with previous work on self-training for

POS tagging (Clark et al. 2003). On the contrary, the uptraining approach achieves

substantial improvements on parsing accuracy. Specifically, after 500k auto-tagged

sentences are added, the approach improves parsing accuracy by 0.4 percent. We

also decide the optimal size of auto-tagged sentences to be 1,500k because it achieves

the highest parsing score when parsing scores are accurate to two decimal places.

On the other hand, we note that uptraining with auto-tagged data causes POS

tagging accuracy to regress. One major cause lies in tagging errors contained in

auto-tagged data. In Section 6.1.4 we will analyze the reason why the uptraining

approach improves parsing accuracy but degrades POS tagging accuracy.

A similar experiment was conducted on the Chinese development set by using the

POS taggers Berkeley-Stanford and Self-Stanford. The results are shown in Table 7.

We can see that the uptraining approach improves parsing accuracy substantially by
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Table 7. Comparative results between uptraining (Berkeley-Stanford) and standard

self-training (Self-Stanford) on the CTB 5.1 development set

Sent. Added POS accuracy (%) F1-score (%)

POS tagger 0 (Base-Stanford) 95.76 84.1

B
er

k
el

ey
-S

ta
n 100k 95.68 84.4

250k 95.58 85.0

500k 95.53 85.0

750k 95.48 84.9

1,000k 95.49 84.7

S
el

f-
S
ta

n
fo

rd 100k 95.76 83.9

250k 95.95 84.4

500k 95.99 84.4

750k 95.94 84.4

1,000k 95.87 84.3

0.9 percent, and it also outperforms the self-training approach. In addition, Berkeley-

Stanford achieves the highest paring accuracy when 500k auto-tagged sentences are

added.

6.1.3 POS tagging results on testing data

Table 8 presents the results of the uptraining approach on the English and Chinese

test sets. We used 1,500k and 500k auto-tagged sentences for English and Chinese

experiments respectively. Moreover, we compared two different integrated POS

taggers: POS-Berkeley and POS-Bikel. From the English results we can see that

uptraining with POS-Berkeley improves parsing accuracy by 0.7 percent in F1-

score (from 89.4 to 90.1 percent; significant at the level of p < 10−3). Moreover,

although POS-Bikel has lower tagging and parsing accuracy than POS-Berkeley,

uptraining with POS-Bikel also achieves an improvement of 0.6 percent (from 89.4

to 90.0 percent; significant at the level of p < 10−3). Given that the improvement

is close to that achieved by POS-Berkeley, the property that the parsers integrate

POS tagging and syntactic parsing together seems to be more important than the

accuracy of the parsers.

In contrast to experimental results on English, the uptraining approach achieves

bigger improvements on Chinese (≥1.0 percent; significant at the level of p < 10−3).

One possible reason is that the Chinese baseline POS tagger (Base-Stanford) has

more room left for further performance improvements than the English baseline

POS tagger (Base-LAPOS).

6.1.4 Additional analysis

The results on the testing data show that the uptraining approach either decreases

per-token accuracy or only achieves trivial improvements in per-token accuracy.

However, the approach benefits syntactic parsing consistently. It is of interest to

examine the reasons for such a phenomenon. To this end, we took Chinese POS
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Table 8. Final results of uptraining of POS tagging on section 23 of the WSJ corpus

and the CTB 5.1 test set

Language POS tagger POS accuracy (%) F1-score (%)

English

Base-LAPOS 97.5 89.4

Berkeley-LAPOS 97.6 90.1

Bikel-LAPOS 97.2 90.0

Chinese

Base-Stanford 95.4 80.1

Berkeley-Stanford 95.5 81.3

Bikel-Stanford 95.2 81.1

Table 9. Confusion matrix of POS tagging results on the CTB 5.1 test set

VV NN DEC DEG JJ NR VA AD

VV 0/0 76/67 0/0 0/0 4/2 0/0 2/2 6/5

NN 57/36 0/0 0/0 0/0 9/8 8/28 2/1 5/6

DEC 0/0 0/0 0/0 41/33 0/0 0/0 0/0 0/0

DEG 0/0 0/0 17/18 0/0 0/0 0/0 0/0 0/0

JJ 6/2 26/34 0/0 0/0 0/0 0/0 1/1 9/6

NR 3/0 12/30 0/0 0/0 0/0 0/0 0/0 0/0

VA 9/10 5/6 0/0 0/0 6/4 0/0 0/0 4/1

AD 6/5 5/6 0/0 0/0 7/5 0/0 0/0 0/0

tagging as a case study and compared the results of uptraining with 500k auto-

tagged sentences with the results of the baseline POS tagger. The comparative results

are shown in Table 9, where the row labels are correct POS tags and the column

labels represent automatically assigned POS tags. For example, the numbers [NN,

VV] = 57/36 in the table refer to the frequency that words of POS tag NN were

incorrectly assigned to VV: the number 57 preceding the backslash is the result of

uptraining, while the number 36 behind the backslash is the result of the baseline

POS tagger.

From the results we can see that Chinese POS tagging has severe errors between

the following POS: NN–VV, DEC–DEG, NN–JJ, and NN–NR. The uptraining

approach has different effect on the POS pairs. Specifically, the approach has

positive effect on disambiguating NN–VV and DEG–DEC but has negative effect on

disambiguating NN–NR and NN–JJ. These POS have distinct effect on subsequent

parsing accuracy. To simplify the analysis, we chose from the test set the sentences

that have only one POS modification caused by the uptraining approach. Among

the seventy-eight sentences that have been picked up, twenty-five sentences contain

alternations between NN and NR. Among the twenty-five sentences, we found that

parsing accuracy of thirteen sentences remained unchanged; parsing accuracy on five

sentences was improved; and parsing accuracy on seven sentences was decreased.

In contrast, nineteen sentences of the seventy-eight sentences contain alternations

between NN and VV, among which parsing accuracy on fourteen sentences is

increased, while parsing accuracy on the other five sentences is decreased. We can
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Table 10. Comparative results on English and Chinese development sets with lexical
dependencies extracted from diverse sources

English Chinese

Data Source LR (%) LP (%) F1-score (%) LR (%) LP (%) F1-score (%)

Baseline 88.2 88.2 88.2 83.7 84.4 84.0

Human-labeled 88.5 88.7 88.6 83.8 84.4 84.1

Auto-parsed 88.9 89.0 89.0 85.2 85.1 85.1

Combined 89.0 89.2 89.1 85.3 85.2 85.2

see that, for the subsequent syntactic parsing task, the errors between NN and

VV have more serious effect than the errors between NN and NR. The uptraining

approach is able to reduce POS tagging errors that have significant effect on

subsequent syntactic parsing.

6.2 Improved shift-reduce parsing

This section is devoted to showing the effectiveness of our approach to improving the

baseline shift-reduce parser. To simplify the discussion, the results presented in this

section are based on the baseline POS taggers, i.e. Base-LAPOS and Base-Stanford.

6.2.1 Comparison of different sources

Table 10 shows comparative results on English and Chinese development sets with

lexical dependencies obtained from different sources. We experimented with four

different settings: no lexical dependency information was used (Baseline), lexical

dependencies were solely from human-labeled training data (Human-Labeled),

lexical dependencies were solely from auto-parsed data (Auto-Parsed), and lexical

dependencies were from the combination of human-labeled and auto-parsed data

(Combined). For the latter three settings, all the dependency features listed in

Table 3 were incorporated. In the data combination, we simply gave our human-

labeled training data a relative weight of one. Note that in this and the following

experiments, auto-parsed data were produced on the whole sets of unlabeled data.

From the results we can see that although lexical dependency information from

human-labeled training data can improve the performance on both English and

Chinese, the improvement on Chinese is moderate (0.1 percent in F1-score). One

reason is that lexical dependencies from human-labeled training data have a

sparseness problem. In contrast, the use of large-scale auto-parsed data brings

on much bigger improvements (0.8 percent F1-score on English and 1.1 percent F1-

score on Chinese). In addition, we find that data combination has trivial effect on

performance. One possible reason is that lexical dependencies from human-labeled

training data are overwhelmed by those from auto-parsed data. We will leave further

discussions on data combination to our future work and focus on the setting of

obtaining lexical dependencies from auto-parsed data.
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Table 11. Main results on section 23 of the WSJ corpus using POS tags automatically

assigned by Base-LAPOS and lexical dependencies extracted from auto-parsed data.

Two types of dependency features are added incrementally

Features LR (%) LP (%) F1-score (%) EX (%)

Baseline 89.5 89.3 89.4 39.2

+Bigram features 90.1 90.0 90.0 39.9

+Trigram features 90.4 90.2 90.3 41.0

Table 12. Main results on the CTB 5.1 test set using POS tags automatically assigned

by Base-Stanford and lexical dependencies extracted from auto-parsed data. Two types

of dependency features are added incrementally

Features LR (%) LP (%) F1-score (%) EX (%)

Baseline 79.5 80.7 80.1 28.2

+Bi-lexical features 80.3 81.6 80.9 28.2

+Tri-lexical features 80.6 81.9 81.2 29.3

6.2.2 Effect of different features

Table 11 shows the results on the English test set, where the two types of dependency

features were added incrementally to the baseline parser. As the results show,

both bigram and trigram dependency features have positive effect on the parsing

accuracy. Specifically, on the whole test set the overall improvement over the baseline

parser is 0.9 percent in F1-score, where bigram dependency features contribute an

absolute 0.6 percent improvement and trigram dependency features further improve

the performance by 0.3 percent over the results of using bigram dependency features.

Significance tests show that the overall improvement on the whole test set is

statistically significant on the level of p < 10−4.

In parallel to the results on the English test set, Table 12 shows the results on the

Chinese test set, using auto-assigned POS tags and lexical dependencies extracted

from auto-parsed data. From the results on the whole test set we can see that

dependency features contribute a bigger absolute improvement on Chinese than

that on English (1.1 percent versus 0.9 percent). One possible reason is that the size

of Chinese unlabeled data used in the paper is much bigger. Significance tests show

that the overall improvement induced by bigram and trigram dependency features

on the whole test is statistically significant on the level of p < 10−3. These results

indicate that the new features are very effective.

6.2.3 Additional analysis

We performed several types of analysis, focusing on English, to investigate the effect

of different sizes of human-labeled training data and auto-parsed data, as well as

how lexical dependency information changes the distribution of first mistakes made
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Fig. 3. Results with varying sizes of human-labeled training data and unlabeled data.

by the baseline parser.

Effect of different sizes of labeled and unlabeled Data: We studied the effect of

varying sizes of human-labeled training data by randomly sampling from sections

2–21. Meanwhile, we always used the whole set of auto-parsed data. The results

are depicted in Figure 3(a). As the results show, auto-parsed data improve parsing

accuracy even when the human-labeled training data are small in size. In addition,

by using our approach, a fraction of sections 2–21 plus the whole set of auto-parsed

data is sufficient to achieve the F1-scores obtained by the parser trained solely on

the whole sections 2–21.

We also examined the effect of varying sizes of unlabeled data. In this experiment,

we used sections 2–21 as human-labeled training data and changed the size of

unlabeled data through random sampling. The results are depicted in Figure 3(b).

From the results we can see that improvements achieved by using unlabeled data

are enlarged with the increment of the size of unlabeled data until the performance

finally levels off.

Reduction on first mistakes: The baseline parser made 1,522 first mistakes on

the English test set. We analyzed how our approach changed the first mistakes.

We grouped the changes into four cases. No-Change (1,090) refers to the case that

the baseline and our parser make the same first mistakes at the same positions. In

the case of Correct (249), first mistakes made by the baseline parser are corrected by

our parser. Wrong (121) means that our parser makes first mistakes earlier than the

baseline parser. Finally, Others (47) refers to the case that our parser and the baseline

parser make first mistakes of different types at the same positions. In addition, we

are especially interested in how our approach reduces first mistakes of the type shift

versus reduce-binary. So we compared the numbers of the first mistakes of this type

in the Correct and Wrong cases, which are 168 and 78 respectively.

6.3 Final results

We combined the efforts on improving POS tagging and shift-reduce parsing, and

obtained the final results on the English and Chinese test sets. Table 13 shows the
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Table 13. Comparison with related work on section 23 of the WSJ corpus with

POS tags automatically assigned by Berkeley-LAPOS.∗ The parsers are based on

shift-reduce parsing.† The results are of self-training with a single latent annotation

grammar

Type Parser LR (%) LP (%) F1-score (%)

S
IN

G
L

E

Ratnaparkhi (1997) 86.3 87.5 86.9

Collins (1999) 88.1 88.3 88.2

Charniak (2000) 89.5 89.9 89.5

Sagae and Lavie (2005)∗ 86.1 86.0 86.0

Sagae and Lavie (2006)∗ 87.8 88.1 87.9

Petrov and Klein (2007) 90.1 90.2 90.1

Carreras et al. (2008) 90.7 91.4 91.1

R
E Charniak and Johnson (2005) 91.2 91.8 91.5

Huang (2008) 92.2 91.2 91.7

S
E

L
F Huang and Harper (2009) 91.1 91.6 91.3

McClosky et al. (2006) 92.1 92.5 92.3

Huang et al. (2010)† 91.4 91.8 91.6

This paper auto-parsed 90.9 90.8 90.9

comparison of our parser with a large body of representative related work. Here

all the related work except Ratnaparkhi (1997), Sagae and Lavie (2005), Sagae

and Lavie (2006), and Carreras, Collins and Koo (2008) utilized integrated POS

taggers. With regard to the exceptions, Ratnaparkhi (1997) adopted a Maximum

Entropy-based POS tagger (Ratnaparkhi 1996); Sagae and Laive (2005) and Sagae

and Lavie (2006) used SVMTool whose tagging accuracy on section 23 of the WSJ

corpus is 97.1 percent;9 Carreras et al. (2008) took as input the POS tags assigned

by the Collins parser (Collins 1997). For fair comparison, here we disregarded

parsers that are based on combination methods such as Petrov (2010) and Zhang

et al. (2009). Following the taxonomy adopted in Huang et al. (2010), we grouped

the related work into single parsers (SINGLE), discriminative reranking approaches

(RE), and self-training (SELF). Note that self-trained parsers in the table were built

on distinct sets of unlabeled data. Specifically, McClosky et al. (2006) made use of

2,000k sentences from the North American News Text corpus, NANC (Graff 1995);

Huang and Harper (2009) sampled 210k sentences from the BLLIP corpus; Huang

et al. (2010) partitioned 1,769,055 BLLIP sentences into ten equally sized subsets

and used a single subset to achieve accuracy in Table 13. From the results we can see

that our parser outperforms all the single parsers listed in the table except Carreras

et al. (2008). However, compared with Carreras et al. (2008), our parser has much

smaller time-complexity: O(nK) versus O(n3G), where K is the beam size used in

our parser and G is the grammar constant in Carreras et al. (2008). Compared with

reranking and self-training parsers, our parser has relatively low parsing accuracy.

But the reranking and self-training techniques are actually complementary with our

9 www.lsi.upc.edu/∼nlp/SVMTool
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Table 14. Comparison with related work on the test set of CTB 5.1 with POS tags

automatically assigned by Berkeley-Stanford.∗ Huang (2009) adapted the parsers to

Chinese parsing on CTB 5.1.† We run the parser on CTB 5.1 to get the results

Type Parser LP (%) LR (%) F1-score (%)
S
IN

G
L

E Charniak (2000)∗ 79.6 82.1 80.8

Bikel (2004)† 79.3 82.0 80.6

Petrov and Klein (2007) 81.9 84.8 83.3

R
E Charniak and Johnson (2005)∗ 80.8 83.8 82.3

This paper auto-parsed 81.2 83.1 82.2

Table 15. Comparison of running time on section 23 of the WSJ corpus where the

time for loading models is excluded.∗ The results of SVM-based shift-reduce parsing

are with greedy search.† The results of MaxEnt-based shift-reduce parser are with

best-first search.‡ Time is reported by authors by running on different hardware

Parser Time (min)

Ratnaparkhi (1997) Unk

Collins (1999) 11.4

Charniak (2000) 7

Sagae and Lavie (2005)∗ 11‡

Sagae and Lavie (2006)† 17‡

Petrov and Klein (2007) 6.5

Carreras et al. (2008) Unk

This paper
Baseline 0.41

Auto-parsed 0.72

approach, so we might enhance our parser with these techniques in the future.

Comparing Chinese constituency parsers is difficult in the sense that previously

reported results were achieved frequently on different versions of CTB and/or

with different data split standards. Zhang and Clark (2009) presented a detailed

comparison between the baseline parser of this paper and a large body of related

work on CTB 2.0. Here we only compared our parser with the parsers available on

the web for Chinese parsing, as shown in Table 14. From the results we can see

that on Chinese parsing our parser outperforms Bikel (2004) and Charniak (2000)

by 1.6 percent and 1.4percent respectively. However, our parser lags behind Petrov

and Klein (2007) and the reranking parser (Charniak and Johnson 2005).

Table 15 shows the comparison of running time between our parser and the single

parsers listed in Table 13. For completeness, we also measured the running time

of the baseline parser. This experiment was conducted on an Intel processor of

2.93 GHz and 8 GB memory. From the comparison we can see that incorporating

lexical dependency features incurs additional running overhead (by comparing the

running time of our parser and the baseline parser), but our parser still has an

obvious advantage over other parsers. It should be noted that the running time of
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the classifier-based Sagae–Laive parsers (Sagae and Lavie 2005; Sagae and Lavie

2006) was evaluated on different hardware, which is much longer than the running

time of our parsers. However, we note that time complexity of the parsers of Sagae

and Lavie (2005) is linear, smaller than that of our parsers (O(n) versus O(kn)). The

long running time of Sagae and Lavie (2005) in Table 15 is largely attributed to the

use of support vector machines. Sagae and Laive (2006) reported the running time

of a Maximum Entropy-based Implementation of Sagae and Lavie (2005), which is

less then 1 min, close to the running time of our parsers. Taking into consideration

the tradeoff between parsing accuracy and running speed, our parser is a suitable

choice for practical applications on massive data, for example parsing the whole

web.

7 Conclusion and future work

We have presented a semi-supervised approach to improving shift-reduce constitu-

ency parsing from two aspects. In respect of POS tagging, we enhanced POS taggers

targeted at syntactic parsing by using auto-tagged POS data produced by integrated

parsers; in respect of shift-reduce parsing, lexical dependency information extracted

from auto-parsed data was utilized, based on which a set of new features was

proposed and integrated into the shift-reduce parser. Our approach succeeded to

construct POS taggers that can provide better POS tags for syntactic parsing and well

addressed the action conflict problem. We evaluated the approach on English and

Chinese data. The results show that our new parsers provide comparable accuracies

with state-of-the-art parsers while maintaining the advantage in parsing speed.

There are many ways in which this research can be continued. First, we are

concerned with the generalization of lexical dependencies. To this end, we propose

to combine POS with words to obtain generalized dependencies. We can also use

semantic classes of words to generalize dependencies. Second, we will experiment

the shift-reduce parser proposed in this paper for bitext parsing (Zhao et al. 2009;

Chen et al. 2012b). In bitext parsing, bilingual information can be used as additional

information to further improve shift-reduce parsing. Intuitively, bilingual information

and dependency information are complementary in disambiguating shift-reduce

actions. All these will be conducted in our future work.
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